Enhancement of Lycopene Production in Escherichia coli by Optimization of the Lycopene Synthetic Pathway

  • KANG MIN-JUNG (Amicogen Inc.) ;
  • YOON SANG-HWAL (Department of Food Science & Nutrition, Gyeongsang National University) ;
  • LEE YOUNG-MI (Department of Food Science & Nutrition, Gyeongsang National University) ;
  • LEE SOOK-HEE (Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • KIM JU-EUN (Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • JUNG KYUNG-HWA (Amicogen Inc.) ;
  • SHIN YONG-CHUL (Department of Microbiology, Gyeongsang National University, Amicogen Inc.) ;
  • KIM SEON-WON (Department of Food Science & Nutrition, Gyeongsang National University, Division of Applied Life Science (BK21), Gyeongsang National University)
  • Published : 2005.08.01

Abstract

Using carotenoid genes of Erwinia herbicola, metabolic engineering was carried out for lycopene production with the pAC-LYCO4 plasmid, which was composed of a chromosomal DNA fragment of E. herbicola containing the crtE, crtB, and crtI genes under the control of the tetracycline promoter and the ipi gene of Haematococcus pluvialis with the trc promoter. Plasmid pAC-LYCm4 was constructed for efficient expression of the four exogenous genes using a strong RBS sequence and the same tetracycline promoter. The optimized expression construct of pAC-LYCm4 increased Iycopene production three times as compared with pAC-LYCO4. pAC-LYCm5 containing ispA behind the four exogenous genes was constructed. There was no significant difference in Iycopene production and cell growth between pAC-LYCm4 and pAC-LYCm5. FPP synthase encoded by ispA was not rate-limiting for Iycopene production. Each gene of crtE, crtB, crtI, and ipi was overexpressed, using pBAD-crtE, pBAD-crtIB, and pBAD-ipiHPI, in addition to their expression from pAC-LYCm4. However, there was no increase oflycopene production with the additional overexpression of each exogenous gene. The four exogenous genes appeared to be not rate-limiting in cells harboring pAC-LYCm4. When pDdxs, pBAD24 containing dxs, was introduced into cells harboring lycopene synthetic plasmids, lycopene production of pAC-LYCO4, pAC-LYCm4, and pAC-LYCm5 was increased by 4.7-, 2.2-, and 2.2-fold, respectively. Lycopene production of pBAD-DXm4 containing crtE, crtB, crtI, ipi, and dxs was 5.2 mg/g dry cell weight with $0.2\%$ arabinose, which was 8.7-fold higher than that of the initial strain with pAC-LYC04. Therefore, the present study showed that proper regulation of a metabolically engineered pathway is important for Iycopene production.

Keywords

References

  1. Armstrong, G A. 1994. Eubacteria show their true colors: Genetics of carotenoid pigment biosynthesis from microbes to plants. J. Bacteriol. 176: 4795-4802 https://doi.org/10.1128/jb.176.16.4795-4802.1994
  2. Armstrong, G A. 1997. Genetics of eubacterial carotenoid biosynthesis: A colorful tale. Annu. Rev. Microbiol. 51: 629-659 https://doi.org/10.1146/annurev.micro.51.1.629
  3. Barkovich, R. and J. C. Liao. 2001. Metabolic engineering of isoprenoids. Metab. Eng. 3: 27-39 https://doi.org/10.1006/mben.2000.0168
  4. Cunningham, F. X., Jr., D. Chamovitz, N. Misawa, E. Gantt, and J. Hirschberg. 1993. Cloning and functional expression in Escherichia coli of a cyanobacterial gene for Iycopene cyclase, the enzyme that catalyzes the biosynthesis of betacarotene. FEBS Lett. 328: 130-138 https://doi.org/10.1016/0014-5793(93)80980-9
  5. Cunningham, F. X., Jr., Z. Sun, D. Chamovitz, J. Hirschberg, and E. Gantt. 1994. Molecular structure and enzymatic function of Iycopene cyclase from the cyanobacterium Synechococcus sp. strain PCC7942. Plant Cell 6: 1107-1121 https://doi.org/10.1105/tpc.6.8.1107
  6. Fujisaki, S., T. Nishino, and H. Katsuki. 1986. Biosynthesis of isoprenoids in intact cells of Escherichia coli. J. Biochem. (Tokyo) 99: 1137-1146 https://doi.org/10.1093/oxfordjournals.jbchem.a135577
  7. Giovannucci, E. 2002. A review of epidemiologic studies of tomatoes, Iycopene, and prostate cancer. Exp. Biol. Med. (Maywood) 227: 852-859 https://doi.org/10.1177/153537020222701003
  8. Giovannucci, E. 1999. Tomatoes, tomato-based products, Iycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer lnst. 91: 317 - 331 https://doi.org/10.1093/jnci/91.4.317
  9. Harker, M. and P. M. Bramley. 1999. Expression of prokaryotic l-deoxy-D-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett. 448: 115-119 https://doi.org/10.1016/S0014-5793(99)00360-9
  10. Hundle, B., M. Alberti, V. Nievelstein, P. Beyer, H. Kleinig, G. A. Armstrong, D. H. Burke, and J. E. Hearst. 1994. Functional assignment of Erwinia herbicola Eho 10 carotenoid genes expressed in Escherichia coli. Mol. Gen. Genet. 245: 406-416 https://doi.org/10.1007/BF00302252
  11. Johnson, E. A. and W. A. Schroeder. 1996. Microbial carotenoids. Adv. Biochem. Eng. Biotechnol. 53: 119-178
  12. Kajiwara, S., P. D. Fraser, K. Kondo, and N. Misawa. 1997. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem. J. 324(Pt 2): 421-426 https://doi.org/10.1042/bj3240421
  13. Kato, J., S. Fujisaki, K. Nakajima, Y. Nishimura, M. Sato, and A. Nakano. 1999. The Escherichia coli homologue of yeast RER2, a key enzyme of dolichol synthesis, is essential for carrier lipid formation in bacterial cell wall synthesis. J. Bacteriol. 181: 2733-2738
  14. Kim, S. W. and J. D. Keasling. 2001. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances Iycopene production. Biotechnol. Bioeng. 72: 408-415 https://doi.org/10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H
  15. Kim, S. J., G. J. Kim, D. H. Park, and Y. W. Ryu. 2003. High level production of astaxanthin by fed-batch culture of mutant strain Phaffia rhodozyma AJ-6-1. J. Microbiol. Biotechnol. 13: 175-181
  16. Kim, J. H., C. H. Kim, and H. I. Chang. 2004. Screening and characterization of red yeast Xanthophyllomyces dendrorhous mutants. J. Microbial. Biotechnol. 14: 570-575
  17. Kim, J. H., S. K. Choi, W. J. Lim, and H. I. Chang. 2004. Protective effect of astaxanthin produced by Xanthophyllomyces dendrorhous mutants on indomethacin-induced gastric mucosal injury in rats. J. Microbiol. Biotechnol. 14: 996-1003
  18. Matthews, P. D. and E. T. Wurtzel. 2000. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl. Microbiol. Biotechnol. 53: 396-400 https://doi.org/10.1007/s002530051632
  19. Mergulhao, F. J. M., G A. Monteiro, J. M. S. Cabral, and M. A. Taipa. 2004. Design of bacterial vector system for the production of recombinant proteins in Escherichia coli. J. Microbiol. Biotechnol. 14: 1-14
  20. Meyer, O., C. Grosdemange-Billiard, D. Tritsch, and M. Rohmer. 2003. Isoprenoid biosynthesis via the MEP pathway. Synthesis of (3,4)-3,4-dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of I-deoxy-D-xylulose 5-phosphate, the substrate of the I-deoxy-D-xylulose 5-phosphate reductoisomerase. Org. Biomol. Chem. 1: 4367-4372 https://doi.org/10.1039/b312193c
  21. Misawa, N., M. Nakagawa, K. Kobayashi, S. Yamano, Y. Izawa, K. Nakamura, and K. Harashima. 1990. Elucidation of the Envinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J. Bacteriol. 172: 6704-6712 https://doi.org/10.1128/jb.172.12.6704-6712.1990
  22. Misawa, N. and H. Shimada. 1997. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59: 169-181 https://doi.org/10.1016/S0168-1656(97)00154-5
  23. Ruther, A., N. Misawa, P. Boger, and G Sandmann. 1997. Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Appl. Microbiol. Biotechnol. 48: 162- 167
  24. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning, 3rd Ed. Cold Spring Harbor Laboratory Press, New York, U.S.A
  25. Sandmann, G. 2001. Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385: 4-12 https://doi.org/10.1006/abbi.2000.2170
  26. Sandmann, G 1994. Carotenoid biosynthesis in microorganisms and plants. Eur. J. Biochem. 223: 7-24 https://doi.org/10.1111/j.1432-1033.1994.tb18961.x
  27. Schnurr, G, A. Schmidt, and G. Sandmann. 1991. Mapping of a carotenogenic gene cluster from Erwinia herbicola and functional identification of six genes. FEMS Microbiol. Lett. 62: 157-161
  28. Sies, H. and W. Stahl. 1998. Lycopene: Antioxidant and biological effects and its bioavailability in the human. Proc. Soc. Exp. Biol. Med. 218: 121-124
  29. Sun, Z., E. Gantt, and F. X. Cunningham, Jr. 1996. Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana. J. Biol. Chem. 271: 24349-24352 https://doi.org/10.1074/jbc.271.40.24349
  30. Wang, C. W., M. K. Oh, and J. C. Liao. 1999. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol. Bioeng. 62: 235-241 https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<235::AID-BIT14>3.0.CO;2-U