Effects of Salicylate and Glucose on Biodegradation of Phenanthrene by Burkholderia cepacia PM07

  • LEE DAE SUNG (Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • LEE MIN WOO (Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • WOO SEUNG HAN (Department of Chemical Engineering, Hanbat National University) ;
  • PARK JONG MOON (Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology)
  • Published : 2005.08.01

Abstract

The stimulatory effects of exogenous salicylate as a pathway inducer on phenanthrene biodegradation were investigated using Burkholderia cepacia PM07. The phenanthrene degradation rate was greatly enhanced by increasing the salicylate additions, and the maximum rate was 19.6 mg $I^{-1}\;d^{-1}$ with the addition of 200 mg $I^{-1}$ of salicylate, 3.5 times higher than that (5.6 mg $I^{-1}\;d^{-1}$) without the addition of salicylate. The degradation rate was decreased at higher concentrations of salicylate (above 500 mg$I^{-1}$), and cell growth was significantly inhibited. The phenanthrene degradation was not affected by increasing glucose up to 2 g $I^{-1}$, although dramatic microbial growth was obtained. The stimulatory effect of exogenous salicylate decreased in the presence of glucose. After the addition of 200 mg $I^{-1}$ of salicylate, approximately $60\%$ of the initial phenanthrene (50 mg $I^{-1}$) was degraded after 96 h. However, with extra addition of 200 mg $I^{-1}$ of glucose, the phenanthrene degradation rate decreased, and only $18.5\%$ of the initial phenanthrene was degraded.

Keywords

References

  1. Baek, K. H., H. S. Kim, H. H. Moon, J. S. Lee, H. M. Oh, and B. D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H 17-1. J. Microbiol. Biotechnol. 14: 901-905
  2. Bossert, I. D. and R. Bartha. 1986. Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bull. Environ. Contam. Tox. 37: 495-495
  3. Carmichael, L. M. and F. K. Pfaender. 1997. The effect of inorganic and organic supplements on the microbialdegradation of phenanthrene and pyrene in soils. Biodegradation 8:1-13 https://doi.org/10.1023/A:1008258720649
  4. Chen, S. H. and M. D. Aitken. 1999. Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccarophila PIS. Environ. Sci. Technol. 33: 435-439 https://doi.org/10.1021/es9805730
  5. Cidaria, D., F. Deidda, and A. Bosett. 1994. A rapid method for naphthalene dioxygenase assay in whole cells of naphthalene cis-dihydrodiols dehydrogenase blocked Pseudomonas fluorescens: Screening of potential inducers of dioxygenase activity. Appl. Microbiol. Biotechnol. 41: 689-693
  6. Han, K. D., Y. T. Jung, and S. Y. Son. 2003. Phylogeneticanalysis of phenanthrene-degrading Sphingomonas. J. Microbiol. Biotechnol. 13: 942-948
  7. Mahaffey, W. R., D. T. Gibson, and C. E. Cerniglia. 1988. Bacterial oxidation of chemical carcinogens: Formation of polycyclic aromatics acids from benz[a]anthracene. Appl. Environ. Microbiol. 54: 2415-2423
  8. Marcoux, J., E. Deziel, R. Villemur, F. Lepine, J. G Bisaillon, and R. Beaudet. 2000. Optimization of high-molecularweight polycyclic aromatic hydrocarbons' degradation in a two-liquid-phase bioreactor. J. Appl. Microbiol. 88: 655-662 https://doi.org/10.1046/j.1365-2672.2000.01011.x
  9. Mihe1cic, J. R. and R. G. Luthy. 1993. Bioavailability of sorbed- and separate phase chemicals. Biodegradation 4: 141-153 https://doi.org/10.1007/BF00695116
  10. Mulder, H., A. M. Breure, J. G Van Andel, J. T. C. Grotenhuis, and W. H. Rulkens. 1998. Influence of hydrodynamic conditions on naphthalene dissolution and subsequent biodegradation. Biotechnol. Bioeng. 57: 145-154 https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<145::AID-BIT3>3.0.CO;2-N
  11. Ogunseitan, O. A., J. L. Delgado, Y. L. Tsai, and B. H. Olson. 1991. Effect of 2-hydroxybenzoate on the maintenance of naphthalene degrading Pseudomonads in seeded and un seeded soil. Appl. Environ. Microbiol. 57: 2873-2879
  12. Ogunseitan, O. A. and B. H. Olson. 1993. Effect of 2hydroxybenzoate on the rate of naphthalene mineralization in soil. Appl. Microbiol. Biotechnol. 38: 799-807 https://doi.org/10.1007/BF00167148
  13. Oh, Y. S., D. S. Sim, and S. J. Kim. 2003. Effectiveness of bioremediation on oil-contaminated sand in intertidal zone. J. Microbiol. Biotechnol. 13: 437-443
  14. Rittmann, B. E., B. F. Smets, and D. A. Stahl. 1990. The role of genes in biological processes: Part J. Environ. Sci. Technol. 24: 23-29 https://doi.org/10.1021/es00071a002
  15. Smith, M. R. 1990. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1: 191-206 https://doi.org/10.1007/BF00058836
  16. Stringfellow, W. T., S. T. Chen, and M. D. Aitken. 1995. Induction of PAH degradation in a phenanthrene-degrading pseudomonad, pp. 83-90. In Hinchee, R. E., Vogel, C. M. and Brockman, F. J. (eds.). Microbial Processes for Biorernediation. Columbus, OH, USA: Battelle Press
  17. Tam, N. F. Y., C. L. Guo, W. Y. Yau, and Y. S. Wong. 2002. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong, Mar. Pollut. Bull. 45: 316-324 https://doi.org/10.1016/S0025-326X(02)00108-X
  18. Trzesicka-Mlynarz, D. and O. P. Ward. 1995. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures obtained from PAHcontaminated soil. Can. J. Microbiol. 41: 470-476 https://doi.org/10.1139/m95-063
  19. Wong, J. W. C., K. M. Lai, C. K. Wan, K. K. Ma, and M. Fang. 2002. Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation, Water Air Soil Pollut. 139: 1-13 https://doi.org/10.1023/A:1015883924901
  20. Woo, S. H. and J. M. Park. 1999. Evaluation of drum bioreactor performance used for decontamination of soil polluted with polycyclic aromatic hydrocarbons. J. Chem. Technol. Biotech. 74: 937-944 https://doi.org/10.1002/(SICI)1097-4660(199910)74:10<937::AID-JCTB128>3.0.CO;2-Q
  21. Woo, S. H., J. M. Park, and B. E. Rittmann. 2001. Evaluation of the interaction between biodegradation and sorption of phenanthrene in soil-slurry systems. Biotechnol. Bioeng. 73: 12-24 https://doi.org/10.1002/1097-0290(20010405)73:1<12::AID-BIT1032>3.0.CO;2-W
  22. Woo, S. H. and J. M. Park. 2004. Biodegradation of aromatic compounds from soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
  23. Yuan, S. Y., S. H. Wei, and B. V. Chang. 2000. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chernosphere 41: 1463-1468
  24. Zaidi, B. R. and S. H. Imam. 1999. Factors affecting microbial degradation of polycyclic aromatic hydrocarbon phenanthrene in the Caribbean coastal water. Mar. Poll. Bull. 38: 737-742 https://doi.org/10.1016/S0025-326X(99)00037-5