Effect of High-Molecular-Weight Poly-$\gamma$-Glutamic Acid from Bacillus subtilis (chungkookjang) on Ca Solubility and Intestinal Absorption

  • PARK CHUNG ;
  • CHOI YOON-HO (BioLeaders Corporation) ;
  • SHIN HYUN-JIN (BioLeaders Corporation) ;
  • POO HARYOUNG (Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University) ;
  • SONG JAE JUN (Korea Research Institute of Bioscience and Biotechnology) ;
  • KIM CHUL-JOONG (Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University) ;
  • SUNG MOON-HEE (BioLeaders Corporation, Department of Bio & Nanochemistry, Kookmin University)
  • Published : 2005.08.01

Abstract

The bioavailability of Ca is currently one of the most important topics in nutrition research and is correlated with gastrointestinal solubility. Thus, to increase the solubility of calcium, this study was undertaken to examine the effect of $\gamma$-PGA on intestinal Ca solubility. The calcium solubility increased when the amount of $\gamma$-PGA was increased, due to the inhibition of the formation of an insoluble Ca complex with phosphate. Therefore, when $\gamma$-PGA-500 (avg. MW 5,000 kDa) was added at 0.5 mg/ml, $75\%$ of the total Ca was soluble. The amount of soluble Ca uptake in the small intestine was investigated using Balb/c mice as an animal model system. The soluble Ca uptake in the mice orally administered with $\gamma$-PGA-500 (avg. MW 5,000 kDa) was significantly higher than that in the $\gamma$-PGA-l00 (avg. MW 1,000 kDa)-administered mice (P<0.05). Accordingly, these results strongly support the notion that the molecular size of $\gamma$-PGA is correlated with Ca solubility. The effects of other factors, such as casein phosphopeptide and vitamin D, on intestinal Ca absorption have also previously been investigated. Therefore, it is hoped that the present observations will help clarify the role of $\gamma$-PGA in Ca solubility and its industrial application as an additive.

Keywords

References

  1. Ashiuchi, M. and H. Misono. 2002. In A. Steinblichel (ed.), Biopolymers, vol. 7. Wiley-VCH, Weinheim, Chapter 6
  2. Ashiuchi, M., T. Kamei, D.-H. Baek, S.- Y. Shin, M.-H. Sung, K. Soda, T. Yagi, and H. Misono. 2001 Isolation of Bacillus suMlis (chungkookjang), a poly-y-glutamate producer with high genetic competence. Appl. Microbiol. Biotechnol. 57: 764-769 https://doi.org/10.1007/s00253-001-0848-9
  3. Cheng, C. Y., Y. Asada, and T. Aida. 1989. Production of ypolyglutamic acid by Bacillus sumlis A35 under denitrifying conditions. Agric. Biol. Chem. 53: 2369-2375 https://doi.org/10.1271/bbb1961.53.2369
  4. Daninippon Pharmaceutical Co, Ltd., 1972. lee cream stabilizer, JP Patent 19735/72
  5. Erba, D., S. Ciappellano, and G Testolin. 2002. Effect ofthe ratio of casein phosphopeptides to calcium (w/w) on passive calcium transport in the distal small intestine of rats. Nutrition 18: 743-746 https://doi.org/10.1016/S0899-9007(02)00829-8
  6. Goto, A. and M. Kunioka. 1992. Biosynthesis and hydrolysis of poly(${\delta}$-glutamic acid) from Bacillus subtilis IFO 3335 . . Biosci. Biotech. Biochem. 56: 1031-1035 https://doi.org/10.1271/bbb.56.1031
  7. Heaney, R. P., C. M. Weaver, and M. L. Fitzsimmons. 1991. Soybean phytate content: Effect of calcium absorption. Am. J. Clin. Nutr. 53: 745-747 https://doi.org/10.1093/ajcn/53.3.745
  8. Ikeda, H. and Y. Doi. 1990. A vitamin-K,-binding factor secreted from Bacillus subtilis. Eur. J. Biochem. 192: 219-224 https://doi.org/10.1111/j.1432-1033.1990.tb19218.x
  9. Kim, Y. J., K. W. Lee, and H. J. Lee. 2003. Increase of conjugated linoleic acid level in milk fat by bovine feeding regimen and urea fractionation. J. Microbiol. Biotechnol. 13: 22-28
  10. Kunno, A., T. Taguchi, and T. Yamaguchi. 1988. New use of polyglutamic acid for foods. EP 0284386 B1
  11. Lee, M. H., J. J. Song, Y. H. Choi, S. P. Hong, E. Rha, H. K. Kim, S. GLee, H. Poo, S. C. Lee, Y. B. Seu, and M-H. Sung. 2003. High-level expression and secretion of Bacillus purnilus lipase B26 in Bacillus subtilis Chungkookjang. J. Microbiol. Biotechnol. 13: 892-896
  12. Loennerdal, B., A. S. Sandberg, B. Sandstroem, and C. Kunz. 1989. Inhibitory effects of phytic acid and other inositol phosphate on zinc and calcium absorption in suckling rats. J. Nutr. 119: 211-214 https://doi.org/10.1093/jn/119.2.211
  13. Naito, H. 1986. The mechanism of enhancement in intestinal calcium absorption with phosphate derived during casein digestion. J. Jpn. Soc. Nutr. Food Sci. 39: 433-439 https://doi.org/10.4327/jsnfs.39.433
  14. Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829-835
  15. Park, C., K.-S. Kim, C.-M. Jung, H.-J. Shin, C.-1. Kim, M. Ashiuchi, K. Soda, and M.-H. Sung. 2003. Effect of poly-yglutamic acid on calcium solubility in vitro and in vivo. The society of deep-sea water and health science. Kyoto Japan 3: 71-75
  16. Pingle, U. and B. V. Ramasastri. 1978. Absorption of calcium from a leafy vegetable rich in oxalates. Br. J. Nutr. 39: 119-125 https://doi.org/10.1079/BJN19780018
  17. Saito, Y., Y.-S. Lee, and S. Kimura. 1998. Minimum effective dose of casein phosphopeptide (CPP) for enhancement of calcium absorption in growing rats. Int. J. Vit. Nutr. Res. 68: 335-340
  18. Sakai, K., C. Sonoda, and K. Murase. 2000. Bitterness relieving agent. IP Patent W00021390
  19. Shih, I. L. and Y. T. Van. 2001. The production of poly(${\delta}$-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79: 207-225 https://doi.org/10.1016/S0960-8524(01)00074-8
  20. Song, J. J., J.-1. Kim, S.-P. Hong, Y.-H. Choi, C. Park, and M.-H. Sung. 2001 Production of a high molecular weight of poly-${\delta}$-glutamic acid. Theories and applications of chemical engineering. Proceedings of KIChE meetings. 7: 3903-3906
  21. Tanimoto, H., M. Mori, M. Motoki, K. Torii, M. Kadowaki, and T. Noguchi. 2001. Natto mucilage containing poly-${\delta}$-glutamic acid increases soluble calcium in the rat small intestine. Biosci. Biotech. Biochem. 65: 516-521 https://doi.org/10.1271/bbb.65.516
  22. Tsuchita, H., T. Susuki, and T. Kuwata. 2001. The effect of casein phosphopeptides on calcium absorption from calciumfortified milk in growing rats. Br. J. Nutr. 85: 5-10 https://doi.org/10.1079/BJN2000206
  23. Yahata, K., J. Sadanobu, and T. Endo. 1992. Preparation of poly-${\alpha}$-benzyl-${\delta}$-polyglutamate fiber. Polym. Prepr. Jpn. 41: 1077
  24. Yamanaka, S. 1991. New gamma-polyglutamic acid, production therefore and drinking agent containing the same. JP Patent 3047087
  25. Yang, J. K., S. H. Lee, D. H. Hahm, l.-L. Kim, and S.-Y. Choi. 2004. Enhancement of calcium-binding quality of proglycinin peptides by chemical phosphorylation. J. Microbiol. Biotechnol. 14: 607 -611