DOI QR코드

DOI QR Code

Rates and Mechanism of Fading Reaction of Magenta Azomethine Dye in Basic Solution

염기성 용액에서 마젠타 아조메틴 색소의 퇴색 반응속도와 메커니즘

  • Lee Joong-Ho (Department of Science Education, Daegu University) ;
  • Kim Jung-Sung (Department of Science Education, Daegu University) ;
  • Kim Chang-Su (Department of Science Education, Daegu University)
  • 이중호 (대구대학교 과학교육학부) ;
  • 김정성 (대구대학교 과학교육학부) ;
  • 김창수 (대구대학교 과학교육학부)
  • Published : 2005.07.01

Abstract

A magenta azomethine dye(D) was synthesized from the reaction of 3-methyl-1-phenyl-2-pyrazoline-5-one with N,N-diethyl-1,4-phenylenediamine. The magenta azomethine dye was identified on the basis of elemental analysis, $^{13}C-NMR$, infrared, and GC/MS studies. The magenta azomethine dye was decomposed in a basic solution. Rate constants of the fading reaction of magenta azomethine dye in ethanol-water solvent were measured spectrophoto­metrically at 540 nm. Reaction rate was increased with the increase of $[OH\^{-}]\;and\;[H\_{2}O]$ in the region of $[H_{2}O]=11\~40\;M$. The reaction was governed by the following rate law. -d[D]/dt = $\{k_o\;+\;k_{OH}[OH^-][H_{2O}]\}[D]$ A possible mechanism consistent with the empirical rate law has been proposed.

Keywords

References

  1. McQueen, D. M. and D. W. Woodward, 1951, Synthetic Color-forming Photographic Colloids, J. Am. Chem. Soc., 73, 4930-4934 https://doi.org/10.1021/ja01154a137
  2. Bent, R. L., J. C. Dessloch, F. C. Duennebier, D. W. Fassett, D. B. Glass, T. H. James, D. B. Julian, W. R. Ruby, J. M. Snell, J. H. Sterner, J. R. Thirtle, P. W. Vittum and A. Weissberger, 1951, Chemical Constitution, Electrochemical, Photographic and Allergenic Properties of p-Amino-N-dialkylanilines, J. Am. Chem. Soc., 73, 3100-3125 https://doi.org/10.1021/ja01151a037
  3. Brown, G. H., J. Figueras, R. J. Gledhill, C. J. Kibler, F. C. McCrossen, S. M. Parmerter, P. W. Vitturn and A. Weissberger, 1957, Azornethine Dyes. II. Color and Constitution of Acylacetamide Azomethine Dyes, J. Am. Chem. Soc., 79, 2919-2927 https://doi.org/10.1021/ja01568a062
  4. Hansel, W., 1976, Zur Darstellung und Struktur von Pyrazolon- Azomethinfarbstoffen, Archiv der Pharmazie, 309, 893-900 https://doi.org/10.1002/ardp.19763091106
  5. Kucybala, Z. and J. Gaca, 1988, Untersuchungen zur Reaktion von Pyrazolon-Azornethin-Farbstoffen mit 2-Pyrazoline-5-on-Derivaten, Journal f. prakt. Chemie., 330, 435-439 https://doi.org/10.1002/prac.19883300314
  6. Vittum, P. W., G. W. Sawdey, R. A. Herdle and M. K. Scholl, 1950, The Formation of Azomethine Dyes from 4-Arylazo-5-pyrazolones, J. Am. Chem. Soc., 72, 1533-1536 https://doi.org/10.1021/ja01160a029
  7. Brown, G. H., B. Graham, P. W. Vittum and A. Weissberger, 1951, Azomethine Dyes. I. Color and Constitution of Pyrazolone Azomethine Dyes, J. Am. Chem. Soc., 73, 919-926 https://doi.org/10.1021/ja01147a011
  8. Vitturn, P. W. and G. H. Brown, 1946, Indoaniline Dyes. I. Some Phenol Blue Derivatives with Substituents in the Phenol Ring, J. Am. Chem. Soc., 68, 2235-2239 https://doi.org/10.1021/ja01215a035
  9. Vitturn, P. W. and G. H. Brown, 1947, Indoaniline Dyes. II. The Effect of Multiple Substitution on the Absorption of Phenol Blue, J. Am. Chem. Soc., 69, 152-155 https://doi.org/10.1021/ja01193a041
  10. Zollinger, H., 1991, Color Chemistry 2nd ed., VCH, 363- 367pp
  11. Nakatani, K., K. Chikama, H. B. Kim and N. Kitamura, 1995, Droplet-size dependence of the electron transfer rate across the single-microdroplet/water interface, Chem. Phys. Lett., 237, 133-136 https://doi.org/10.1016/0009-2614(95)00275-9
  12. Nakatani, K., T. Uchida, N. Kitamura and H. Masuhara, 1994, Micrometer size dependence of mass transfer rate across a single dropletwater interface by a laser trapping-electrochemistry techenique, J. Electroanaly. Chem., 375, 383-386 https://doi.org/10.1016/0022-0728(94)03401-X
  13. Nakatani, K., T. Uchida, H. Misawa, N. Kitamura and H. Masuhara, 1994, Laser trapping and electrochemistry of single oil droplet in water: electron transfer across the oil-drop-letlelectrode interface, J. Electroanaly. Chem., 367, 109-114 https://doi.org/10.1016/0022-0728(93)03036-O
  14. Nakatani, K., T. Suzuki, S. Shitara and N. Kitamura, 1998, Concentration Effect in Azomethine Dye Formation in Individual Micro-Oil Droplets Dispersed in an Aqueous Dodecyl Sulfate/Gelatin Solution, Langmuir, 14, 2286-2290 https://doi.org/10.1021/la970927l
  15. Nakatani, K., T. Suto, M. Wakabayashi, H. B. Kim and N. Kitamura, 1995, Direct Analyses of an Electrochemically Induced Dye Formation Reaction across a Single-Microdroplet/Water Interface, J. Phys. Chem., 99, 4745-4749 https://doi.org/10.1021/j100013a051
  16. Nakatani, K., T. Uchida, S. Funakura, A. Sekiguchi, H. Misawa, N. Kitamura and H. Masuhara, 1993, Control of a Dye Formation Reaction in a Single Micrometer-Sized Oil-Droplet by Laser Traping and Microelectrochemical Methods, Chem. Lett., 717-720
  17. 上原麗樹, 佐治哲夫, 1996, 寫眞の發色現像基づく色素薄膜の電解合成, 日本化學會誌, 11, 938-942
  18. Kobayash, H., M. Okuzawa, H. Kurono, Y. Okawa and T. Ohono, 1994, Spectroelectrochemical Studies on the Formation Reaction Kinetics with an Arylthio Leaving Pyrazolone Magenta Coupler, J. Imag. Sci., 38, 28-31
  19. Kobayashi, H., K. Yoshida, H. Takano, T. Ohono and S. Misuzawa, 1988, Electrochemical Experiments on the Kinetics of the Coupling Reaction of Quinonediimines, J Imag, Sci., 32, 90-94
  20. Sano, K., 1969, The Alkaline Hydrolysis of Yellow Azomethine Dyes, J. Org. Chem., 34, 2076-2080 https://doi.org/10.1021/jo01259a010
  21. Sano, K., 1968, Alkaline Hydrolysis of Yellow Azomethine Dyes, Tetrahedron Letters, 28, 3203-3206
  22. Reeves, R. L. and L. K. J. Tong, 1965, The Mechanism of Bleaching of Naphthoquinone Imine Dyes in Alkaline Solution, J. Org. Chem., 38, 237-242
  23. Reeves, R. L. and L. K. Tong, 1962, Kinetics of Reaction of Nucleophilic Reagents with Naphthoquinone Imine Dyes in Alkaline Solution, J. Am. Chem. Soc., 84, 2050-2057 https://doi.org/10.1021/ja00870a008
  24. Espenson, J. H., 1981, Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, 22-30pp
  25. Levy, G. C. and R. L. Lichter, 1980, Carbon-13 Nuclear Magnetic Resonance Spectroscopy, John Wiley & Sons, 136-170pp
  26. Lambert, J. B., H. F. Shurvell, D. Lightner and R. G. Cooks, 1987 Introduction to Organic Spectroscopy, part II, Macmillan Publishing Company, 159-239pp
  27. Grunwald, E. and S. Winstein, 1948, The Correlation of Solvolysis Rates, J. Am. Chem. Soc., 70, 846-854 https://doi.org/10.1021/ja01182a117
  28. Bentley, T. W., F. L. Schadt and P. V. R. Schleyer, 1972, Correlation of Solvolysis Rates with Three- and Four-Parameter Relationships. A Scale of Solvent Nucleophilicities, J. Am. Chem. Soc., 94, 992-995 https://doi.org/10.1021/ja00758a049
  29. Burgess, J., 1973, Kinetics of Aquation of Chloro- and Thiocvanato-chrominium(lll) Complexes in Mixed Aqueous Solvents, J. Chem. Soc., Dalton Trans., 825-827pp
  30. Thomas, G. and L. A. P. Kane-Maguire, 1974, Kinetics of Aquation of trans-Dichlorobis(1,3- diaminopropane)cobalt(lll) Chloride in Mixed Aqueous solvents, J. Am. Chem. Soc., Dalton Trans., 1688-1690pp
  31. Reichardt, C., 1979, Solvent Effects in Organic Chemistry, Verlag Chemie, 140-155pp