Relationship Between Enhancement of Electrostriction and Decrease of Activation Energy in Porcine Pancreatic Lipase Catalysis

  • PARK HYUN (Korea Polar Research Institute, Korea Ocean Research & Development Institute) ;
  • LEE KI-SEOG (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute) ;
  • PARK SEON-MI (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute) ;
  • LEE KWANG-WON (Division of Food Science, Korea University) ;
  • KIM AUGUSTINE YONGHWI (Department of Food Science & Technology, Sejong University) ;
  • CHI YOUNG-MIN (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute)
  • Published : 2005.06.01

Abstract

The contribution of electrostriction of water molecules to the stabilization of the negatively charged tetrahedral transition state of a lipase-catalyzed reaction was examined by means of kinetic studies involving high-pressure and solvent dielectric constant. A good correlation was observed between the increased catalytic efficiency of lipase and the decreased solvent dielectric constant. When the dielectric constant of solvents was lowered by 5.00 units, the losses of activation energy and free energy of activation were 7.92 kJ/mol and 11.24 kJ/mol, respectively. The activation volume for $k_{cat}$ decreased significantly as the dielectric constant of solvent decreased, indicating that the degree of electrostriction of water molecules around the charged tetrahedral transition state has been enhanced. These observations demonstrate that the increase in the catalytic efficiency of the lipase reaction with decreasing dielectric constant resulted from the stabilization of electrostatic energy for the formation of an oxyanion hole, and that this stabilization was caused by the increase of electrostricted water around the charged tetrahedral transition state. Therefore, we conclude that the control of solvent dielectric constant can stabilize the tetrahedral transition state, thus lowering the activation energy.

Keywords

References

  1. Britto, P. J., L. Knipling, and J. Wolff. 2002. The local electrostatic environment determines cysteine reactivity of tubulin. J. Biol. Chem. 277: 29018-29027 https://doi.org/10.1074/jbc.M204263200
  2. Burdette, R. A. and D. M. Quinn. 1986. Interfacial reaction dynamics and acylenzyme mechanism for lipoprotein lipasecatalyzed hydrolysis of lipid p-nitrophenyl ester. J. Biol. Chem. 261: 12016-12021
  3. Castaneda-Agullo, M. and L. M. Del-Castillo. 1958. The influence of the medium dielectric strength upon trypsin kinetics. J. Gen. Physiol. 42: 617-634 https://doi.org/10.1085/jgp.42.3.617
  4. Compton, P. D., R. J. Coli, and A. L. Fink. 1986. Effect of methanol cryosolvents on the structural and catalytic properties of bovine trypsin. J. Biol. Chem. 261: 1248-1252
  5. Eckert, C. A. 1972. High pressure kinetics in solution. Annu. Rev. Phys. Chem. 23: 239-264 https://doi.org/10.1146/annurev.pc.23.100172.001323
  6. Fink. A. L. 1974. The trypsin-catalyzed hydrolysis of N-benzyloxycarbonyl-L-lysine p-nitrophenyl ester in dimethylsulfoxide at sub-zero temperatures. J. Biol. Chem. 249: 5027-5032
  7. Hermoso, J., D. Pignol, B. Kerfelec, I. Crenon, C. Chapus, and J. C. Fontecilla-Camps. 1996. Lipase activation by nonionic detergents: The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J. Biol. Chem. 271: 18007-18016 https://doi.org/10.1074/jbc.271.30.18007
  8. Isaacs, N. S. 1981. Effect of pressure on rate process, pp. 181-354. In: Liquid Phase High-Pressure Chemistry. John Wiley & Sons, New York, U.S.A
  9. Kim, J. B. and J. S. Dordick. 1993. Pressure affects enzyme function in organic media. Biotechnol. Bioeng. 42: 772-776 https://doi.org/10.1002/bit.260420613
  10. Lee, K. S., Y. M. Chi, and Y. G. Yu. 2002. Effect of pressure on catalytic properties of glutamate racemase from Aquifex pyrophilus, an extremophilic bacteria. J. Microbiol. Biotechnol. 12: 149-152
  11. Liu, R., R. Ravindernath, C. E. Ha, C. E. Petersen, N. V. Bhagavan, and R. G. Eckenhoff. 2002. The role of electrostatic interaction in human serum albumin binding and stabilization by halothane. J. Biol. Chem. 277: 36373-37379 https://doi.org/10.1074/jbc.M205479200
  12. Low, P. S. and G. N. Somero. ]975. Activation volumes in enzyme catalysis: Their sources and modification by lowmolecular-weight solutes. Proc. Nat. Acad. Sci. USA 72: 3014-3018
  13. Low, P. S. and G. N. Somero. 1975. Protein hydration changes during catalysis: A new mechanism of enzyme rateenhancement and ion activation/inhibition of catalysis. Proc. Nat. Acad. Sci. USA 72: 3305-3309
  14. Maurel, P. C. 1978. Relevance of dielectric constant and solvent hydrophobicity to the organic solvent effect in enzymology. J. Biol. Chem. 253: 1677-1683
  15. Michels, P. C., J. S. Dordick, and D. S. Clark. 1997. Dipole formation and solvent electrostriction in subtilisin catalysis. J. Am. Chem. Soc. 119: 9331-9336 https://doi.org/10.1021/ja9713892
  16. Moreau, H., A. Moulin, Y. Gargouri, J. Noel, and R. Verger. 1991. Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate. Biochemistry 30: 1037-1041 https://doi.org/10.1021/bi00218a022
  17. Morild, E. 1981. The theory of pressure effects on enzymes. Adv. Prot. Chem. 34: 93-166 https://doi.org/10.1016/S0065-3233(08)60519-7
  18. Nakasako, M., M. Odaka, M. Yohda, N. Dohmae, K. Takio, N. Kamiya, and J. Endo. 1999. Tertiary and quaternary structure of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: Roles of hydration water molecules in stabilizing the structure and the structural origin of the substrate specificity of the enzyme. Biochemistry 38: 9887-9898 https://doi.org/10.1021/bi982753s
  19. Nicolas, A., M. Egmond, T. Verrips, J. Vlieg, S. Longhi, C. Cambillau, and C. Martinez. 1996. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Biochemistly 35: 398-410 https://doi.org/10.1021/bi9515578
  20. Park, H., K. S. Lee, Y. M. Chi, and S. W. Jeong. 2005. Effects of methanol on the catalytic properties of porcine pancreatic lipase. J. Microbiol. Biotechnol. 15: 296-301
  21. Park, H. and Y. M. Chi. 1998. Distinction between the influence of dielectric constant and of methanol concentration on trypsin-catalyzed hydrolysis and methanolysis. J. Microbiol. Biotechnol. 8: 656-662
  22. Petersen, M. T. N., P. Fojan, and S. B. Petersen. 2001. How do lipases and esterases work: The electrostatic contribution. J. Biotechnol. 85: 115-147 https://doi.org/10.1016/S0168-1656(00)00360-6
  23. Reichardt, C. 1988. Solvent effects on the rate of homogeneous chemical reactions, pp. 121-284. In: Solvents and Solvent Effects in Organic Chemistry, 2nd Ed., VCH, Weinheim
  24. Svendsen, A. 2000. Lipase protein engineering. Biochim. Biophys. Acta 1543: 223-238 https://doi.org/10.1016/S0167-4838(00)00239-9
  25. Szeltner, Z., D. Rea, V. Renner, L. Juliano, V. Fulop, and L. Polgar. 2003. Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding. J. Biol. Chem. 278: 48786-48793 https://doi.org/10.1074/jbc.M309555200
  26. Szeltner, Z., D. Rea, Y. Renner, V. Fulop, and L. Polgar. 2002. Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. J. Biol. Chem. 277: 42613-42622 https://doi.org/10.1074/jbc.M208043200
  27. Taniguchi, Y. and S. Makimoto. 1988. High pressure studies of catalysis. J. Mol. Cat. 47: 323-334 https://doi.org/10.1016/0304-5102(88)85057-0
  28. Van-Eldik, R., T. Asano, and W. J. Le Noble. 1989. Activation and reaction volumes in solution. Chem. Rev. 89: 549-688 https://doi.org/10.1021/cr00093a005
  29. Warshel, A. 2000. Perspective on the energetics of enzymatic reaction. Theor. Chem. Acc. 103: 337-339 https://doi.org/10.1007/s002149900047
  30. Warshel, A. and S. Russel. 1986. Theoretical correlation of structure and energetics in the catalytic reaction of trypsin. J. Am. Chem. Soc. 108: 6569-6579 https://doi.org/10.1021/ja00281a021
  31. Xu, Z. F., A. Affleck, P. Wangikar, V. Suzawa, J. S. Dordick, and D. S. Clark. 1994. Transition state stabilization of subtilisins in organic media. Biotechnol. Bioeng. 43: 515-520 https://doi.org/10.1002/bit.260430612
  32. Zandonella, G., P. Stadler, L. Haalck, F. Spener, F. Paltaut, and A. Hermetter. 1999. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Eur. J. Biochem. 262: 63-69 https://doi.org/10.1046/j.1432-1327.1999.00325.x