Dynamic Behavior of Regulatory Elements in the Hierarchical Regulatory Network of Various Carbon Sources-Grown Escherichia coli

  • Lee, Sung-Gun (Department of Chemical Engineering, College of Engineering, Pusan National University) ;
  • Hwang, Kyu-Suk (Department of Chemical Engineering, College of Engineering, Pusan National University) ;
  • Kim, Cheol-Min (Department of Biochemistry, College of Medicine, Medical Research Institute, Pusan National University)
  • Published : 2005.06.01

Abstract

The recent rapid increase in genomic data related to many microorganisms and the development of computational tools to accurately analyze large amounts of data have enabled us to design several kinds of simulation approaches for the complex behaviors of cells. Among these approaches, dFBA (dynamic flux balance analysis), which utilizes FBA, differential equations, and regulatory events, has correctly predicted cellular behaviors under given environmental conditions. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. The use of Boolean rules for regulatory events in dFBA has limited the representation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. In this paper, we adopted the operon as the basic structure, constructed a hierarchical structure for a regulatory network with defined fundamental symbols, and introduced a weight between symbols in order to solve the above problems. Finally, the total control mechanism of regulatory elements (operons, genes, effectors, etc.) with time was simulated through the linkage of dFBA with regulatory network modeling. The lac operon, trp operon, and tna operon in the central metabolic network of E. coli were chosen as the basic models for control patterns. The suggested modeling method in this study can be adopted as a basic framework to describe other transcriptional regulations, and provide biologists and engineers with useful information on transcriptional regulation mechanisms under extracellular environmental change.

Keywords

References

  1. Adhya, S. 1996. The lac and gal operons today, pp. 181-200. In E. C. C. Lin and A. Simon Lynch (eds.), Regulation of Gene Expression in Escherichia coli. Chapman & Hall, New York, U.S.A
  2. Covert, M. W., C. H. Schilling, and B. O. Palsson. 2001. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213: 73-88 https://doi.org/10.1006/jtbi.2001.2405
  3. Covert, M. W. and B. O. Palsson. 2002. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277: 28058-28064 https://doi.org/10.1074/jbc.M201691200
  4. Covert, M. W., E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson. 2004. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429: 92-96 https://doi.org/10.1038/nature02456
  5. Cotter, P. A. and R. P. Gunsalus. 1992. Contribution of the Fnr and ArcA gene products in coordinate regulation of cytochrome o and d oxidase (cyoABCDE and cydAB) genes in Escherichia coli. FEMS Microbiol. Lett. 70: 31-36
  6. Ettema, T., J. van der Oost, and M. Huynen. 2001. Modularity in the gain microbial genomes. Trends Genet. 17: 485-487 https://doi.org/10.1016/S0168-9525(01)02384-8
  7. Feng, G. and C. Yanofsky. 2001. Reproducing tna operon regulation in vitro in an S-30 system. J. Biol. Chem. 276: 1974-1983 https://doi.org/10.1074/jbc.M008892200
  8. Glick, B. R. and J. J. Pasternak. 1998. Molecular Biotechnology, pp. 35-38. 2nd Ed. ASM Press, Washington, DC, U.S.A
  9. Hong, S. H. and S. Y. Lee. 2000. Metabolic flux distribution in a metabolically engineered Escherichia coli strain producing succinic acid. J. Microbiol. Biotechnol. 10: 496-501
  10. Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571-577
  11. Huerta, A. M., H. Salgado, D. Thieffry, and J. Collado-Vides. 1998. RegulonDB: A database on transcriptional regulation in Escherichia coli. Nucleic Acids Res. 26: 55-59 https://doi.org/10.1093/nar/26.1.55
  12. Karp, P. D., R. Monica, S. Milton, T. P. lan, M. P. Suzanne, and P. T. Alida. 2000. The EcoCyc and MetaCyc databases. Nucleic Acids Res. 28: 56-59 https://doi.org/10.1093/nar/28.1.56
  13. Kazarinoff, M. N. and E. E. Snell, 1977. Essential arginine residues in tryptophanase from Escherichia coli. J. Biol. Chem. 252: 7598-7602
  14. Konan, V. K. and C. Yanofsky. 2000. Rho-dependent transcription termination in the tna operon of Escherichia coli: Roles of the boxA sequence and the rut site. J. Bacteriol. 182: 3981-3988 https://doi.org/10.1128/JB.182.14.3981-3988.2000
  15. Kremling, A., K. Bettenbrock, B. Laube, J. W. Lengeler, and E. D. Gilles. 2001. The organization of metabolic reaction networks: Application for diauxic growth on glucose and lactose. Metab. Eng. 3: 362-379 https://doi.org/10.1006/mben.2001.0199
  16. Lee, J. W., A. Goel, M. M. Ataai, and M. M. Domach. 2002. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 248-258
  17. Lee, T. H., M. Y. Kim, Y. W. Ryu, and J. H. Seo. 2001. Estimation of theoretical yield for ethanol production from D-xylose by recombinant Saccharomyces cerevisiae using metabolic pathway synthesis algorithm. J. Microbiol. Biotechnol. 11: 384-388
  18. Lee, S. Y. and Papoutsakis. 1999. Metabolic Flux Balance Analysis, pp. 13-57. Marcel Dekker, New York, U.S.A
  19. MacAdams, H. H. and L. Shapiro. 1995. Circuit simulation of genetic networks. Science 269: 650-656 https://doi.org/10.1126/science.7624793
  20. Mahadevan, R., J. S. Edwards, and J. D. Francis. 2002. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83: 1331-1340 https://doi.org/10.1016/S0006-3495(02)73903-9
  21. Meyers, S. and P. Friedland. 1984. Knowledge-based simulation of genetic regulation in bacteriophage lambda. Nucleic Acids Res. 12: 1-9 https://doi.org/10.1093/nar/12.1Part1.1
  22. Overbeek, R., M. Fonstein, M. D'Souza, G. D. Pusch, and N. Maltsev. 1999. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96: 2896-2901
  23. Saier, M. H. J., T. M. Ramseier, and J. Reiszer. 1996. Regulation of carbon utilization, pp. 1325-1343. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1. ASM Press, Washington, D.C
  24. Schilling, C. H., J. S. Edwards, D. Letscher, and B. O. Palsson. 2000. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng. 71: 286-306 https://doi.org/10.1002/1097-0290(2000)71:4<286::AID-BIT1018>3.0.CO;2-R
  25. Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering: Principles and Methodologies, pp. 180-193. Academic Press, London, U.K
  26. Shen-Orr, S. S., R. Milo, S. Mangan, and U. Alon. 2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31: 64-68 https://doi.org/10.1038/ng881
  27. Tamames, J., G. Casari, C. Ouzounis, and A. Valencia. 1997. Conserved cluster of functionally related genes in two bacterial genomes. J. Mol. Evol. 44: 66-73 https://doi.org/10.1007/PL00006122
  28. Tomita, M., K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Yugi, K. Tanida, J. C. Venter, and C. A. Hutchison III. 1999. E-Cell: Software environment for whole-cell simulation. Bioinformatics 15: 72-84 https://doi.org/10.1093/bioinformatics/15.1.72
  29. Varma, A., B. W. Boesch, and B. O. Palsson. 1993. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59: 2465-2473
  30. Varma, A. and B. O. Palsson. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild type Escherichia coli W3110. Appl. Environ. Microbol. 60: 3724-3731
  31. Varma, A. and B. O. Palsson. 1994. Metabolic flux balancing: Basic concepts, scientific and practical use. Nat. Biotech. 12: 994-998 https://doi.org/10.1038/nbt1094-994
  32. Winston, P. H. 1992. Artificial Intelligence, pp. 119-137. 3th Ed. Addison Wesley, Massachusetts, U.S.A
  33. Wong, P., S. Gladney, and J. D. Keasling. 1997. Mathematical model of the lac operon: Inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotechnol. Progr. 13: 132-143 https://doi.org/10.1021/bp970003o
  34. Yada, T., M. Nakao, Y. Totoki, and K. Nakai. 1999. Modeling and predicting transcriptional units of Escherichia coli genes using hidden Markov models. Bioinformatics 15: 987 -993 https://doi.org/10.1093/bioinformatics/15.12.987
  35. Zheng, Y., J. D. Szustakowski, L. Fortnow, R. J. Roberts, and S. Kasif. 2002. Computational identification of operons in microbial genomes. Genome Res. 12: 1221-1230