새로운 Real Time PCR 방법을 통한 Malaria(Plasmodium vivax)의 검출

Novel Real Time PCR Method for Detection of Plasmodium vivax

  • Ki, Yeon-Ah (Department of Chemistry, Dongguk University) ;
  • Kim, So-Youn (Department of Chemistry, Dongguk University)
  • 발행 : 2005.06.01

초록

말라리아는 세계적으로 다시 발생하는 감염성 질환으로 모기에 의해 옮겨지는 말라리아 원충에 의해서 발병한다. 말라리아 원충을 검출하기 위하여 혈액 도말법 등 여러 가지 정량적인 assay가 활용 되고 있다. Real time PCR 은 반응이 일어나는 동안 PCR 산물의 생성을 계속적으로 모니터링 할 수 있는 방법으로서 최근 많은 환자들의 말라리아 원충을 한번에 탐지 하는데 적용되고 있다. 본 연구에서는 말라리아 원충 중 한국에서 질환을 일으키는 Plasmodium vivax를 탐지하기 위해 26명의 환자 혈액에서 분리 정제한 genomic DNA를 가지고 SYBR Green based-real time PCR을 수행하였다. 특히, 기존의 real time PCR에 사용한 18S rRNA와는 달리 DBP 유전자를 사용하여 새로운 말라리아 검출방법을 정량적이면서도 간편하고 경제적인 방법으로 개발하였다. 특히, real time PCR로 나온 결과를 임상적인 titer로 바꾸어 주기 위해서 reference 유전자로는 말라리아 환자의 상태와 관계없이 ACTB이 안정하다는 것을 real time PCR로 입증하였고 ACTB 유전자를 reference 유전자로 사용하였다. 본 연구에서는 real time PCR assay에 DBP라는 유전자를 처음 사용하였을 뿐 아니라 titer 보정을 위한 reference 유전자, ACTB를 real time PCR assay을 통해 확보하여 더 정확한 titer 값을 얻고자 했다. 이런 결과를 바탕으로 Taqman based-real time PCR과 본 연구의 결과를 정량비교를 하였다. 특히, 26명의 말라리아 환자 샘플을 3 group(Group I, II, III)로 나누어서 그 결과 정량적인 경향성 일치를 나타내었다. 특히, 높은 titer을 갖는 말라리아 샘플(Group I)에서 가장 많은 정량적인 차이를 보였지만, 간편하고 경제적인 SYBR Green-based real time PCR을 이용하여 DBP 유전자를 증폭하는 새로운 방법으로 말라리아를 Semi-quantitative 하게 검출할 수 있음을 보였다.

Malaria is a re-emerging infectious disease that is spreading to areas where it had been eradicated, such as Eastern Europe and Central Asia. To avoid the mortality from malaria, early detection of the parasite is a very important issue. The peripheral blood smear has been the gold standard method for the diagnosis of malaria infection. Recently, several other methods have been introduced for quantitative detection of malaria parasites. Real time PCR that employs fluorescent labels to enable the continuous monitoring of PCR product formation throughout the reaction has recently been used to detect several human malaria parasites. 18S rRNA sequences from malaria parasites have been amplified using Taqman real time PCR assay. Here, a SYBR Green-based real time quantitative PCR assay for the detection of malaria parasite-especially, Plasmodium vivax - was applied for the evaluation of 26 blood samples from Korean malaria patients. Even though SYBR Green-based real time PCR is easier and cheaper than Taqman-based assay, SYBR Green-based assay cannot be used because 18S rRNA cannot be specifically amplified using 1 primer set. Therefore, we used DBP gene sequences from Plasmodium vivax, which is specific for the SYBR Green based assays. We amplified the DBP gene from the 26 blood samples of malaria patients using SYBR Green based assay and obtained the copy numbers of DBP genes for each sample. Also, we selected optimal reference gene between ACTB and B2M using real time assay to get the stable genes regardless of Malaria titer. Using selected ACTB reference genes, we successfully converted the copy numbers from samples into titer, ${\sharp}$ of parasites per microliter. Using the resultant titer from DBP based SYBER Green assay with ACTB reference gene, we compared the results from our study with the titer from Taqman-based assay. We found that our results showed identical tendency with the results of 18S rRNA Taqman assay, especially in lower titer range. Thus, our DBP gene-utilized real time assay can detect Plasmodium vivax in Korean patient group semi-quantitatively and easily.

키워드

참고문헌

  1. Barnwell, J. W., M. E. Nichols, and P. Rubinstein. 1989. In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J. Exp. Med. 169: 1795-1802 https://doi.org/10.1084/jem.169.5.1795
  2. Barker, R. H., T. Banchongaksorn, J. M. Courval, W. Suwonkerd, K. Rirnwungtragoon, and D. F. Wirth. 1994. Plasmodium falciparum and P vivax: factors effecting sensitivity and specificity of PCR-based diagnosis of malaria. Exp. Parasitol. 74: 41-49
  3. Bustin, S. A. 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol Endocrinol 29: 23-39 https://doi.org/10.1677/jme.0.0290023
  4. Farnert, A., A. P. Arez, A. T. Correia, A. Bjorkman, G. Snounou, and V. do Rosario. 1999. Sampling and storage of blood and the detection of malaria parasites by polymerase chain reaction. Trans. R. Soc. Trap. Med. Hyg. 93: 50-53 https://doi.org/10.1016/S0035-9203(99)90177-3
  5. Gunderson, J. H., M. L. Sogin, G Wollett, M. Hollingdale, V. F. de la Cruz, A. P. Waters, and T. F. McCutchan. 1987. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238: 933-937 https://doi.org/10.1126/science.3672135
  6. Hermsen, C. C., D. S. Telgt, E. H. Linders, L. A. van de Locht, W. M. Eling, E. J. Mensink, and R. W. Sauerwein. 2001. Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol. Biochem. Parasitol. 118: 247-251 https://doi.org/10.1016/S0166-6851(01)00379-6
  7. Kain, K. C, M. A. Harrington, S. Tennyson, and J. S. Keystone. 1998. Jul Imported malaria: prospective analysis of problems in diagnosis and management. Clin. Infect. Dis. 27: 142-149 https://doi.org/10.1086/514616
  8. Kawamoto, F., H. Miyake, O. Kaneko, M. Kimura, T. D. Nguyen, T. D. Nguyen, Q. Liu, M. Zhou, D. D. Le, S. Kawai, S. Isomura, and Y. Wataya. 1996. Sequence variation in the 18S rRNA gene, a target for PCR-based malaria diagnosis, in Plasmodium ovale from southern Vietnam. J. Clin. Microbiol. 34: 2287-2289
  9. Kain, K. C, D. E. Kyle, and C. Wongsrichanalai. 1994. Qualitative and semi-quantitative polymerase chain reaction to predict Plasmodium falciparum treatment failure. J. Infect. Dis. 170: 1626-1630 https://doi.org/10.1093/infdis/170.6.1626
  10. Kim, S. and T. Kim. 2003. Selection of optimal internal controls for gene expression profiling of liver diseases. Biotechniques 35: 456-460
  11. Kho, W. G, J. Y. Chung, E. J. Sim, D. W. Kim, and W. C. Chung. 2001. Analysis of polymorphic regions of Plasmodium vivax Duffy binding protein of Korean isolates. Kor. J. Parasitol. 39: 143-150 https://doi.org/10.3347/kjp.2001.39.2.143
  12. Levine, R. A., S. C. Warlaw, and S. P. Patton. 1989. Detection of haematoparasites using quantitative buffy coat analysis tubes. Parasitol. Today 5: 132-134 https://doi.org/10.1016/0169-4758(89)90056-2
  13. Milne, L. M., M. S. Kyi, P. L. Chiodini, and D. C. Warhurst. 1994. Accuracy of routine laboratory diagnosis of malaria in the United Kingdom. J. Clin. Pathol 47: 740-742 https://doi.org/10.1136/jcp.47.8.740
  14. Paik, Y. H., H. I. Ree, and J. C. Shim. 1988. Malaria in Korea. Jpn. J. Exp Med. 58: 55-60
  15. Payne, D. 1988. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull. World Health Organ. 66: 621-626
  16. Perandin, F., N. Manca, A. Calderaro, G Piccolo, L. Galati, L. Ricci, M. C. Medici, M. C. Arcangeletti, G. Snounou, G. Dettori, and C. Chezzi. 2004. Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J. Clin. Microbial. 42: 1214-1219 https://doi.org/10.1128/JCM.42.3.1214-1219.2004
  17. Phillips, R. S. 2001. Current status of malaria and potential for control Clin. Microbial. Rev. 14: 208-226 https://doi.org/10.1128/CMR.14.1.208-226.2001
  18. Pieroni, P., C. D. Mills, C. Ohrt, M. A. Harrington, and K. C. Kain. 1998. Comparison of the ParaSight-F test and the ICT Malaria Pf test with the polymerase chain reaction for the diagnosis of Plasmodium falciparum malaria in travellers. Trans. R. Soc. Trop. Med. Hyg. 92: 166-169 https://doi.org/10.1016/S0035-9203(98)90730-1
  19. Scopei. K. K., C. J. Fontes, A. C. Nunes, M. F. Horta, and E. M. Braga. 2004. High prevalence of Plamodium malariae infections in a Brazilian Amazon endemic area (ApiacasMato Grosso State) as detected by polymerase chain reaction. Acta Trop. 90: 61-64 https://doi.org/10.1016/j.actatropica.2003.11.002
  20. Seesod, N., P. Nopparat, A. Hedrum, A. Holder, S. Thaithong, M. Uhlen, and J. Lundeberg. 1997. An integrated system using immunomagnetic separation, polymerase chain reaction, and colorimetric detection for diagnosis of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 56: 322-328
  21. Singh, B., A. Bobogare, J. Cox-Singh, G Snounou, M. S. Abdullah, and H. A. Rahman. 1999. A genus- and speciesspecific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am. J. Trop. Med. Hyg. 60: 687-692
  22. Snounou, G, S. Viriyakosol, W. Jarra, S. Thaithong, and K. N. Brown. 1993. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol. Biochem. Parasitol. 58: 283-292 https://doi.org/10.1016/0166-6851(93)90050-8
  23. Snounou, G, S. Viriyakosol, X. P. Zhu, W. Jarra, L. Pinheiro, V. E. do Rosario, S. Thaithong, and K. N. Brown. 1993. High sensit!vity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 61: 315-320 https://doi.org/10.1016/0166-6851(93)90077-B
  24. Weiss, J. B. 1995. DNA probes and PCR for diagnosis of parasitic infections. Clin. Microbial. Rev. 8: 113-130