반코마이신 내성 Staphylococcus aureus 억제 물질 생산 Streptomyces sp.의 분리 및 동정

Isolation and Identification of Streptomyces sp. Producing Anti-vancomycin Resistant Staphylococcus aureus Substance

  • 오세택 (건국대학교 생명공학과) ;
  • 이준재 (건국대학교 생명공학과) ;
  • 이지연 (건국대학교 생명공학과) ;
  • 김진규 (건국대학교 생명공학과) ;
  • 양시용 (건국대학교 생명공학과) ;
  • 김양수 (울산의과대학교 서울아산병원 감염내과) ;
  • 송민동 (건국대학교 생명공학과)
  • Oh Se-Teak (Department of Biotechnology, Konkuk University) ;
  • Lee Jun-Jae (Department of Biotechnology, Konkuk University) ;
  • Lee Ji-Youn (Department of Biotechnology, Konkuk University) ;
  • Kim Jin-Kyu (Department of Biotechnology, Konkuk University) ;
  • Yang Si-Yong (Department of Biotechnology, Konkuk University) ;
  • Kim Yang-Soo (Division of Infectious Diseases, Seoul Asan Medical Center, University of Ulsan College of Medicine) ;
  • Song Min-Dong (Department of Biotechnology, Konkuk University)
  • 발행 : 2005.06.01

초록

An Actinomycetes producing an anti-VRSA (vancomycin-resistant Staphylococcus aureus) substance was isolated from soil. The cultural, morphological, physiological and phylogenetic analyses of an isolated strain were investigated for identification. Cultural characteristics based on ISP (International Streptomyces Project) were as follows: white aerial mycelium, yellow reverse side, and good growth on various medium. Also, the isolate did not produce the soluble pigment. Morphological characteristics were showed cylindrical spore chain and smooth spore surface by SEM (Scanning Electron Microscope). Physiological characteristics were showed LL-type by DAP isomer analysis and detected glycine, glutamic acid and alanine. A phylogenetic analysis of the 16S rDNA provided a clue that the isolated strain was actually a member of the genus Streptomyces, because the determined sequence exhibited a higher homology with Streptomyces echinatus. The isolate was identified to be a genus of Streptomyces sp.. The optimal culture conditions for the maximum production of anti-VRSA substance by Streptomyces sp. were attained in a culture medium composed of $2.0\%$ (w/v) glucose, and $0.4\%$ (w/v) yeast extract. The anti-VRSA substance was highly produced after 5 days of culture. Optimal pH and temperature conditions for the production of anti-VRSA substance were pH 7.0 and $28^{\circ}C$, respectively.

키워드

참고문헌

  1. Chesneau, O., A. Morvan, and S. N. En. 2000. Retrospective screening for heterogeneous vancomycin resistance in diverse Staphylococcus aureus clones disseminated in French hospitals. J. Antimicrob. Chemother. 45: 897-890
  2. Choi, W. C., S. Y. Hwang, T. K. Park, and S. K. Kim. 2002. Identification of Streptomyces sp. producing new polyene antibiotics and in vivo antimicrobial activity of Tetrin C against phytopathogenic fungi. J. Microbiol. Biotechnol. 12: 204-208
  3. Dietz, A. and J. Mathew. 1971. Classification of Streptomyces spore surfaces into five groups. Appl. Microbiol. 21: 527-533
  4. Felsenstein, J. 1993. PHYLIP: Phylogenetic Inference Package. Version 3.5. University of Washington, Seattle, U.S.A
  5. Ferraz, V., A. G. Duse, M. Kassel, A. D. Black, T. Ito, and K. Hiramatsu. 2000. Vancomycin-resistant Staphylococcus aureus occurs in South Africa. S. Aft. Med J. 90: 1113
  6. Harper, J. J. and G H. G Davis. 1979. Two-dimensional thinlayer chromatography for amino acid analysis of bacterial cell walls. International J. Systematic Bacteriol. 29: 56-58 https://doi.org/10.1099/00207713-29-1-56
  7. Hood, J., G. F. S. Edwards, B. Cosgrve, E. Curran, D. Morrison, and C. G. Gemmell. 2000. Vancomycinintermediate Staphylococcus aureus at a Scottish hospital. J. Infect. 40: A11
  8. ISCC-NBS Color-Name Charts Illustrated with Centroid Colors. National Bureau of Standards, U.S.A
  9. Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules, pp. 21-132. In H. N. Munro (ed.), Mammalian Protein Metabolism, vol. 3. Academic press, New York, U.S.A
  10. Kim, B. J., M. J. Cho, J. C. Kim, K. Y. Cho, G. J. Choi, C. H. Lee, and Y. H. Lim. 2001. Streptomyces showing antifungal activities against six plant pathogenic fungi. J. Microbiol. Biotechnol. 11: 1120-1123
  11. Kim, M. N., C. H. Pai, J. H. Woo, J. S. Ryu, and K. Hiramatsu. 2000. Vancomycin intermediate Staphylococcus aureus in Korea. J. Clin. Microbiol. 38: 3879-3881
  12. Lee, C. H., B. J. Kim, G. J. Choi, K. Y. Cho, H. J. Yang, C. S. Shin, S. Y. Min, and Y. H. Lim. 2002. Sreptomyces with antifungal activity against rice blast causing fungus, Magnaporthe grisea. J. Microbiol. Biotechnol. 12: 1026-1028
  13. Lee, M. J., D. S. Lim, M. S. Lee, W. H. Yoon, and C. H. Kim. 1997. Characterization of Streptomyces sp. AMLK-135 producing anti-MRSA antibiotics. J. Microbiol. Biotechnol. 7: 397-401
  14. Ploy, M. C., C. Grelaud, C. Martin, L. de Lumley, and F. Densis. 1998. First clinical isolate of vancomycinintermediate Staphylococcus aureus in a French hospital. Lancet. 351: 1212
  15. Rhee, K. H., K. H. Choi, C. J. Kim, and C. H. Kim. 2001. Identification of Strptomyces sp. AMLK-335 producing antibiotic substance inhibitory to vancomycin-resistant Enterococci. J. Microbiol. Biotechnol. 11: 469-474
  16. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  17. Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces sp. International J. Systematic Bacteriol. 16: 313-340 https://doi.org/10.1099/00207713-16-3-313
  18. Smith T. L., M. L. Pearson, and K. R. Wilcox. 1999. Emergence of vancomycin resistance in Staphylococcus aureus. New Engl. Med. 340: 493-501 https://doi.org/10.1056/NEJM199902183400701
  19. Williams, S. T. and F. L. Davis. 1967. Use of a scanning electron microscope for the examination of Actinomycetes. J. Gen. Microbiol. 48: 171-177 https://doi.org/10.1099/00221287-48-2-171
  20. William, S. T., M. E. Sharpe, J. G Holt, R. G E. Murray, D. J. Brener, N. R. Krieg, J. W. Mouldar, N. Pfening, P. H. A. Sneath, and J. T. Staley. 1989. Bergey's Manual of Systematic Bacteriology, vol. 4. William & WilIkins, Baltimore
  21. Yamada, K. and K. Kamagata. 1970. Taxonomic studies on Coryneform bacteria. II. Principle amino acids in the cell wall and their taxonomic significance. J. Gen. Appl. Microbiol. 16: 103-113 https://doi.org/10.2323/jgam.16.1_103