Antiarrhythmic Effects of KR-32570, a Novel Na+-H+ Exchanger Inhibitor, on Ischemia/Reperfusion-Induced Arrhythmias

  • Hwang, Geum-Shil (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Seo, Ho-Won (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Kyu-Yang (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Sun-Kyung (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Yoo, Sung-Eun (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Byung-Ho (Medicinal Science Division, Korea Research Institute of Chemical Technology)
  • Published : 2005.03.01

Abstract

The present study was performed to evaluate antiarrhythmic effects of KR-32570, a novel inhibitor of sodium hydrogen exchanger subtype-1 (NHE-1), in rat arrhythmia induced by focal ischemia and reperfusion. During ischemia, KR-32570 significantly decreased the number of premature ventricular contraction (PVC) from 152.0 times to 75.5, 52.4 and 20.0 times for 0.1, 0.3 and 1.0 mg/kg, respectively (p<0.05) and the duration of ventricular tachycardia (VT) from 88.1 s to 35.8, 7.7 and 1.3 s, respectively(p<0.05) in anesthetized rats subjected to 10-min coronary occlusion of coronary artery. Similarlt to ischemia-induced arrhythmia, KR-32570 significantly decreased reperfusion-induced arrhythmia including PVC (41.3, 21.5, 11.3 and 6.6 times at vehicle, 0.1, 0.3 and 1.0 mg/kg, respectively, p<0.05) and VT (100.5, 64.2, 25.8 and 25.2 s, respectively, p<0.05), and VF (86.9, 27.5, 6.9 and 0 s, respectively, p<0.05). Moreover, KR-32570 dose-dependently decreased the incidence of mortality occurring after reperfusion (41, 27, 18 and 0% at vehicle, 0.1, 0.3, 1.0 mg/kg, respectively). These results suggest that KR-32570 has a potent antiarrhythmic effect in rat arrhythmia induced by ischemia and reperfusion.

Keywords

References

  1. Aye, N. N., Xue, Y. X. and Hashimoto, K. (1997). Antiarrhythmic effects of cariporide, a novel $Na^+-H^+$ exchange inhibitor, on reperfusion ventricular arrhythmias in rat hearts. Eur J Pharmacol. 339, 111-127
  2. Bayes de Luna, A., Coumel, P. and Leclercq, J. F. (1989). Ambulatory sudden cardiac death: mechanisms of production of fatal arrhythmia on the basis of data from 157 cases. Am Heart J. 117, 151-159 https://doi.org/10.1016/0002-8703(89)90670-4
  3. Bollensdorff, C., Knopp, A., Biskup, C., Zimmer, T. and Benndorf, K. (2004). $Na^+$ current through KATP channel: consequences for $Na^+$ and $K^+$ fluxes during early myocardial ischemia. Am J Physiol Heart Circ Physiol. 286, H283-H295 https://doi.org/10.1152/ajpheart.00232.2003
  4. Curtis, M. J. and Hearse, D. J. (1989). Ischaemia-induced and reperfusion-induced arrhythmias differ in their sensitrvity to potassium: implications for mechanisms of initiation and maintenance of ventricular fibrillation. J Mol Cell Cardiol. 21, 21-40 https://doi.org/10.1016/0022-2828(89)91490-9
  5. Dennis, S. C. Gevers, W. and Opie, L. H. (1991). Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 23, 1077-1086 https://doi.org/10.1016/0022-2828(91)91642-5
  6. Doggrell, S. A. and Hancox, J. C. (2003). Is timing everything? Therapeutic potential of modulators of cardiac Na(+) transporters. Expert Opin Investig Drugs. 12, 1123-1142 https://doi.org/10.1517/13543784.12.7.1123
  7. du Toit, E. F. and Opie, L. H. (1993). Role for the $Na^+/H^+$ exchanger in reperfusion stunning in isolated perfused rat heart. J Cardiovase Pharmacal. 22, 877-883 https://doi.org/10.1097/00005344-199312000-00016
  8. Fiolet, J. W., Baartscheer, A., Schumacher, C. A., Coronel, R. and Welle, H. F. (1984). The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of trans sarcolemmal sodium and potassium gradients. J Mol Cell Cardiol. 16, 1023-1036 https://doi.org/10.1016/S0022-2828(84)80015-2
  9. Frelin, C., Vigne, P. and Lazdunski, M. (1984). The role of the $Na^+/H^+$ exchange system in cardiac cells in relation to the control of the internal $Na^+$ concentration. A molecular basis for the antagonistic effect of ouabain and amiloride on the heart. J Biol Chem. 259, 8880-8885
  10. Gumina, R. J., Daemmgen, J. and Gross, G. J. (2000). Inhibition of the $Na^+/H^+$ exchanger attenuates phase lb ischemic arrhythmias and reperfusion-induced ventricular fibrillation. Eur J Pharmacal. 396, 119-124 https://doi.org/10.1016/S0014-2999(00)00200-4
  11. Hill, J. L. and Gettes, L. S. (1980). Effect of acute coronary artery occlusion on local myocardial extracellular $K^+$ activity in swine. Circulation. 61, 768-778 https://doi.org/10.1161/01.CIR.61.4.768
  12. Hinkle, L. E. and Thaler, H. T. (1982). Clinical classification of cardiac deaths. Circulation. 65, 457-464 https://doi.org/10.1161/01.CIR.65.3.457
  13. Hirche, H., Franz, C., Bos, L., Bissig, R. and Schramm, M. (1980). Myocardial extracellular $K^+$ and $H^+$ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12, 579-593 https://doi.org/10.1016/0022-2828(80)90016-4
  14. Kaplinsky, E., Ogawa, S., Balke, C. W. and Dreifus, L. S. (1979). Two periods of early ventricular arrhythmias in the canine acute infarction model. Circulation. 60, 397-404 https://doi.org/10.1161/01.CIR.60.2.397
  15. Karmazyn, M. (1996). The sodium-hydrogen exchange system in the heart: its role in ischemic and reperfusion injury and therapeutic implications. Can J Cardiol. 12, 1074-1082
  16. Karmazyn, M. (2002). Antiarrhythmic effects of Na-H exchange inhibition. Drug Dev Res. 55, 22-28 https://doi.org/10.1002/ddr.10034
  17. Lee, B. H., Seo, H. W., Yoo, S. E., Kim, S. O., Lim, H. and Shin, H. S. (2001). Differential action of KR-31378, a novel potassium channel activator, on cardioprotective and hemodynamic effects. Drug Devel Res. 54, 182-190 https://doi.org/10.1002/ddr.10028
  18. Lee, B. H., Seo, H. W. and Yoo, S. E. (2004). Cardioprotective effects of (2S,3R,4S)- N'-benzyl- N' -cyano-N-(3,4-dihydro-2-dimethoxymethyl- 3-hydroxy- 2-methyl-6-nitro- 2H -benzopyran-4- yl)- guanidine (KR-31372) in rats and dogs. Pharmacology. 70, 74-82 https://doi.org/10.1159/000074671
  19. Lee, B. H., Seo, H. W., Yi, K. Y., Lee, S., Lee, S. and Yoo, S. E. (2005). Effects of KR-32570, a new $Na^+/H^+$ exchanger inhibitor, on functional and metabolic impairments produced by global ischemia and reperfusion in the perfused rat heart. Eur J Pharmacol. In press
  20. Litwin, S. E. and Bridge, J. H. (1997). Enhanced $Na^+-Ca2^+$ exchange in the infarcted heart: implications for excitation-contraction coupling. Circ Res. 81, 1083-1093 https://doi.org/10.1161/01.RES.81.6.1083
  21. Manning, A. S. and Hearse, D. J. (1984). Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol. 16, 497-518 https://doi.org/10.1016/S0022-2828(84)80638-0
  22. Masereel, B., Pochet, L. and Laeckmann, D. (2003). An overview of inhibitors of Na(+)/H(+) exchanger. Eur J Med Chem. 38, 547-554 https://doi.org/10.1016/S0223-5234(03)00100-4
  23. Ohara, F., Sugimoto, T., Yamamoto, N., Ohkubo, K., Ozaki, T., Maeda, K., Seki, J. and Goto, T. (1999). Protective effect of FR168888, a new $Na^+/H^+$ exchange inhibitor, on ischemia and reperfusion-induced arrhythmia and myocardial infarction in rats: in comparison with other cardioprotective compounds. Jpn J Pharmacol. 80, 295-302 https://doi.org/10.1254/jjp.80.295
  24. Pogwizd, S. M. and Corr, P. B. (1987). Electrophysiologic mechanisms underlying arrhythmias due to reperfusion of ischemic myocardium. Circulation. 76, 404-426 https://doi.org/10.1161/01.CIR.76.2.404
  25. Pogwizd, S. M., Schlotthauer, K., Li, L., Yuan, W. and Bers, D. M. (2001). Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual ${\beta}$-adrenergic responsiveness. Circ Res. 88, 1159-1167 https://doi.org/10.1161/hh1101.091193
  26. Scholz, W. and Albus, U. (1995). Potential of selective sodiumhydrogen exchange inhibitors in cardiovascular therapy. Cardiovasc Res. 29, 184-188 https://doi.org/10.1016/S0008-6363(96)88568-3
  27. Stromer, H., de Groot, M. C. H., Hom, M., Faul C., Leupold, A., Morgan, J. P., Scholz, W. and Neubauer, S. (2000). $Na^+/H^+$ exchange inhibition with HOE642 improves postischemic recovery due to attenuation of $Ca2^+$overload and prolonged acidosis on reperfusion. Circulation. 101, 2749-2755 https://doi.org/10.1161/01.CIR.101.23.2749
  28. Tani, M. and Neely, J. R. (1989). Role of intracellular $Na^+$ and $Ca2^+$ overload and depressed recovery of ventricular function of reperfused ischemic hearts. Possible involvement of $H^+-Na^+$ and $Na^+-Ca2^+$ exchange. Circ Res. 65, 1045-1056 https://doi.org/10.1161/01.RES.65.4.1045
  29. Tani, M. and Neely, J. R. (1990). $Na^+$ accumulation increases $Ca2^+$ overload and impairs function in anoxic rat heart. J Mol Cell Cardiol. 22, 57-72 https://doi.org/10.1016/0022-2828(90)90972-5
  30. Thandroyen, F. T., Morris, A. C. Hagler, H. K., Ziman, B., Pai, L., Willerson, J. T. and Buja, L. M. (1991). Intracellular calcium transients and arrhythmia in isolated heart cells. Circ Res. 69, 810-819 https://doi.org/10.1161/01.RES.69.3.810
  31. Walker, M. J., Curtis, M. J., Hearse, D. J., Campbell, R. W, Janse, M. J., Yellon, D. M., Cobbe, S. M., Coker, S. J., Harness, J. B., Harron, D. W, et al. (1988). The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res. 22, 447-455 https://doi.org/10.1093/cvr/22.7.447
  32. Zhu, B. M., Miyamoto, S., Karniya, K., Komori, S. and Hashimoto, K. (2002). Inhibitory effects of pre-ischemic and postischemic treatment with FR 168888, a $Na^+/H^+$ exchange inhibitor, on reperfusion-induced ventricular arrhythmias in anesthetized rat. Jpn J Pharmacol. 88, 93-99 https://doi.org/10.1254/jjp.88.93