References
-
Belcheva, M.W., Vogel, Z., Ignatova, E., Avidor-Reiss, T., Zippel, R., Levy, R, Young, E.C., Barg, I. and Coscia, C.J. (1998). Opioid modulation of extracellular signal-regulated protein kinase activity is Ras-dependent and involves
$G{\beta}{\gamma}$ subunits. J. Neurochem. 70, 635-645 https://doi.org/10.1046/j.1471-4159.1998.70020635.x - Berhow, M.T., Hiroi, N. and Nestler, E.J. (1996). Regulation of ERK, part of the neurotropin signal transduction cascade, in the rat meso limbic dopamine system by chronic exposure to morphine or cocaine. J. Neurosci. 16, 4707-4715
- Chen, J.C., Smith, E.R., Cahill, M., Cohen, R. and Fishman, J.R. (1992). The opioid receptor binding of pentazocine, morphine, fentanyl, butorphanol and nalbuphine. Life Sci. 52, 389-396
- Childers, S.R. (1991). Opioid receptor-coupled second messengers. Life Sci. 48, 1991-2003 https://doi.org/10.1016/0024-3205(91)90154-4
- Cuellar, B., Fernandez, A.P., Lizasoain, I., Moro, M.A., Lorenzo, P., Bentura, M.L., Rodrigo, J. and Leza, J.C. (2000) Up-regulation of neuronal NO synthase immunoreactivity in opiate dependence and withdrawal. Psychopharmacology (Berl.) 148, 66-73 https://doi.org/10.1007/s002130050026
- D' Amour, F.E. and Smith, D.L., (1942). A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther. 72, 74-79
- Davis, R.J. (1993). The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14553-14556
- Ellman, G.L. (1959). Tissue sulfhydryl compounds on acute toxicity of morphinone. Arch. Biochem. Biophys. 82, 70-77 https://doi.org/10.1016/0003-9861(59)90090-6
- Fukunaga, K. and Miyamoto, E. (1998). Role of MAP kinase in neurons. Mol. Neurobiol. 16, 79-95 https://doi.org/10.1007/BF02740604
- Impey, S., Obrietan, K. and Storm, D.R. (1999). Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23, 11-14 https://doi.org/10.1016/S0896-6273(00)80747-3
-
Kim, D.S., Lim, H.K, Jang, S. and Oh, S. (2003). Changes of the level of G protein
${\alpha}$ -subunit mRNA by tolerance to and withdrawal from butorphanol. Neurochem. Res. 28, 1771-1778 https://doi.org/10.1023/A:1026198820420 - Koob, G.F., Sanna, P.P. and Bloom, F.E. (1998). Neuroscience of addiction. Neuron 21, 467-476 https://doi.org/10.1016/S0896-6273(00)80557-7
- Koyuncuoglu, H., Dizdar, Y., Aricioglu, F. and Sayin, U. (1992). Efects of MK-801 on morphine physical dependence: attenuation and intensification. Pharmacol. Biochem. Behav. 43, 484-490
- Nagamatsu, K., Kido, Y., Terao, T., Ishida, T. and Toki, S. (1982). Protective effect of sulfhydryl compounds on acute toxicity of morphinone. Life Sci. 30, 1121-1127 https://doi.org/10.1016/0024-3205(82)90533-1
- Nagamatsu, K., Kido, Y., Terao, T., Ishida, T. and Toki, S. (1982). Effect of morphinone on opiate receptor binding and morphine-elicited analgesia. Life Sci. 31, 1451-1457 https://doi.org/10.1016/0024-3205(82)90006-6
- Nagamatsu, K., Kido, Y., Terao, T., Ishida, T. and Toki, S.(1983). Studies on the mechanism of covalent binding of morphine metabolites to proteins in mouse. Drug Meta. Dispos. 11, 190-194
- Nestler, E.J. (1996). Under siege: the brain on opiates. Neuron 16, 897-900 https://doi.org/10.1016/S0896-6273(00)80110-5
- Nestler, E.J., Hyman, S.E. and Malenka, R.C. (2001). Signalling to the nucleus. pp 115-137. in Molecular neuropharmacology, McGraw-Hill, New York
- Nestler, E.J. (1992). Molecular mechanisms of drug addiction. J. Neurosci. 12, 2439-2450
- Noda, Y., Yamada, K., Komori, Y., Sugihara, H., Furukawa, H., Nabeshima, T. (1996) Role of nitric oxide in the development of tolerance and sensitization to behavioral effects of phencyclidine in mice. Br. J. Pharmacol. 204, 339-340
- Oh, S., Kim, J.I., Chung, M.W. and Ho, I.K. (2000). Modulation of NMDA receptor subunit mRNA in butorphanol-tolerant and - withdrawing rats. Neurochem. Res. 25, 1603-1611 https://doi.org/10.1023/A:1026618603795
- Ozaki, S., Narita, M., Narita, M., Ozaki, M., Khotob, J. and Suzuki, T. (2004). Role of extracellular signal-regulated kinase in the ventral tegmental area in the suppression of the morphine-induced rewarding effect in mice with sciatic nerve ligation. J. Neurosci. 88, 1389-1397
- Penning, J.P., Samson, B., Baxter, A.D. (1988). Reversal of epidural morphine-induced respiratory depression and pruritus with nalbuphine. Can. J. Anaesth. 35, 599-604 https://doi.org/10.1007/BF03020347
- Rhim, H. and Miller, R.J. (1994). Opioid receptors modulate diverse types of calcium channels in the nucleus tractus solitarius of the rat. J. Neurosci. 14, 7608-7615
- Schmidt, W.K., Tam, S.W., Shotzberger, G.S., Smith, D.H. Jr, Clark, R. and Vernier, V.G. (1985). Nalbuphine. Drug Alcohol Depend. 14, 339-362 https://doi.org/10.1016/0376-8716(85)90066-3
- Tokuyama, S., Wakabayashi, H. and Ho, I.K. (1996) Direct evidence for a role of glutamate in the expression of opioid withdrawal syndrome. Eur. J. Pharmacol. 295, 123-129 https://doi.org/10.1016/0014-2999(95)00645-1
-
Walker, E.A. and Young, A.M. (1993). Discriminative-stimulus effects of the low efficacy
${\mu}$ agonist nalbuphine. J. Pharmacol Exp. Ther. 267, 322-330 -
Zhang, Z., Xin, S.M., Wu, G.X., Zhang, W.B., Ma, L. and Pei, G. (1999). Endogenous
${\\delta}$ -opioid and$ORL_1$ receptors couple to phosphorylation and activation of p38 MAPK in NG 108-15 cells and this is regulated by protein kinase A and protein kinase C. J. Neurochem. 73, 1502-1509 https://doi.org/10.1046/j.1471-4159.1999.0731502.x