피자두(Prunus salicina Lindl. cv. Soldam) 미숙과의 apoptosis 유도 효과

Induction of Apoptosis by Immature Prunus salicina Lindl. cv. Soldam

  • 유미희 (계명대학교 식품가공학 전공) ;
  • 임효권 (계명대학교 식품가공학 전공) ;
  • 황보미향 (계명대학교 식품가공학 전공) ;
  • 이지원 (계명대학교 식품가공학 전공) ;
  • 이인선 (계명대학교 전통미생물자원개발 및 산업화연구(TMR) 센터)
  • Yu, Mi-Hee (Department of Food Science and Technology, Keimyung University) ;
  • Im, Hyo-Gwon (Department of Food Science and Technology, Keimyung University) ;
  • HwangBo, Mi-Hyang (Department of Food Science and Technology, Keimyung University) ;
  • Lee, Ji-Won (Department of Food Science and Technology, Keimyung University) ;
  • Lee, In-Seon (The Center for Traditional Microorganism Resources, Keimyung University)
  • 발행 : 2005.04.30

초록

본 연구에서는 생육시기별로 피자두를 수확한 후 피자두의 아세톤 추출물을 이용하여 인간 유래 간암, 위암, 자궁암, 백혈암 및 유방암 세포주에 대한 세포독성효과를 조사하였고, 특히 유방암 세포주인 MDA-MB-231 세포주를 사용하여 피자두의 유방암 세포의 세포주기에 미치는 영향과 세포사 관련 조절 단백질의 발현 양상을 분석함으로써 피자두의 유방암 억제 기전을 살펴보았다. 인간유래의 암세포주를 이용하여 피자두 추출물의 성장 저해 효과를 측정한 결과, 농도 의존적으로 모든 암세포주에 대해 성장 저해 효과를 보였으며, 특히 피자두 1-4의 미숙과 추출물에서 높은 성장 저해 효과를 보였다. 특히 호르몬 비의존성 유방암세포인 MDA-MB-231에 대한 피자두 추출물의 성장 저해 효과는 4mg/mL의 농도의 모든 추출물에서 높은 효과를 보였으며, 피자두 1의 추출물에서는 97%의 높은 성장 저해 효과를 보였다. MDA-MB-231 세포주에 피자두 미숙과 추출물을 처리했을 때 apoptosis를 유도하는 유전자인 Bcl-2 family에 영향을 미치는 것으로 보여지며, 순차적으로 capase-3 활성이 촉진되고, 이것에 의해 apoptosis가 유도되는 것으로 생각된다. 앞으로 이들 활성성분들의 규명과 인체실험과 더불어 피자두 미숙과에 대한 독성평가가 병행된다면 항암과 관련된 기능성 식품과 치료제 등의 개발에 있어 천연소재로서 피자두 미숙과의 유용성을 기대할 수 있을 것으로 생각된다.

Apoptosis of Prunus salicina Lindl. cv. Soldam, which possesses hematopoiesis, osteoporosis prevention, and antimutagenic effects, at different growth stages was evaluated. Cytotoxic effect of acetone extracts of immature fruits against various tumor cell lines was higher than that of mature fruits, particularly in hormone-independent human breast cancer, MDA-MB-231 cell line. Immature fruit extract increased expression level of pro-apoptotic protein Bax and reduced that of anti-apoptotic protein Bcl-2, and stimulated caspase-3 activity in MDA-MB-231 cells. Results suggest immature fruit of P. salicina Lindl. cv. soldam to be natural source for development of functional food and medical agents to prevent human breast cancer.

키워드

참고문헌

  1. Byrd JC, Park JHY, Schaffer BS, Garmroudi F, MacDonald PG. Dimerization of the insulin-like growth factor II/mannose 6-phos-phate receptor, J. Biol. Chem. 25: 18647-18656 (2000)
  2. Rho SN, Oh HS. Effect of Omija extracts on the growth of liver cancer cell line SNU-398, Korean J. Nutr. 35: 201-206 (2002)
  3. Kim SH, Kim HY. Aging. pp 83-85. Minumsa, Daewoo series of science texts, Seoul, Korea (1995)
  4. Ames BN, Saul RL. Oxidative DNA damage, cancer and aging. Oxygen and human disease. Ann. Inter. Med. 107: 536-539 (1987)
  5. Kim JH. Antioxidative activity and pharmaco-constituents of Houttuyniae herba MS thesis, Sookmyung Woman's University, Seoul, Korea (1998)
  6. Shin UY. Studies on biological activities of Spargnanium erectum. PhD thesis, Dongduk Woman's University, Seoul, Korea (1998)
  7. Clarke PG, Clarke S. Historic apoptosis, Nature. 378-230 (1995)
  8. Robaye, Mosselmans R, Fiers W, Dumont JE, Galand P. Tumor necrosis factor induces apoptosis in normal endothelial cells in vitro, Am. J. Pathol. 138: 447-453 (1991)
  9. Tsujimoto Y, Crossman J, Jaffe E, Croce CM. Involvement of the BCL-2 gene in Human Follicular lymphoma. Science 228: 1440-1443 (1985) https://doi.org/10.1126/science.3874430
  10. Zhao ZQ, Budde JM, Morris C, Wang NP, Velez DA, Murak S, Guyton RA, Vinten JJ. Adenosine attenuated reperfusion induced apoptotic cell death by modulation expression of Bcl-2 and Bax proteins. J. Mol. Cell Cardiol. 33: 57-68 (2001) https://doi.org/10.1006/jmcc.2000.1275
  11. Steller H, Mechanism and genes of cellular suicide. Science 267: 1445-1449 (1995) https://doi.org/10.1126/science.7878463
  12. Kim HJ, Yu MH, Lee SO, Park JH, Park DC, Lee IS. Effects of plum fruits extracts at different growth stages on quinone reductase induction and growth inhibition on cancer cells. J. Korean Soc. Food Sci. Nutr. 33: 1445-1450 (2004) https://doi.org/10.3746/jkfn.2004.33.9.1445
  13. Sung YJ, Kim YC, Kim MY, Lee JB, Chung SK. Approximate composition and physicochemical properties of plum (Prunus salicina). J. Korean Soc. Agric. Chem. Biotechnol. 45: 134-137 (2002)
  14. Kim DO, Jeong SW, Lee CY, Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321-326 (2003) https://doi.org/10.1016/S0308-8146(02)00423-5
  15. Wang H, Cao G, Prior RL. Total antioxidant capacity of fruits, J. Agric. Food Chem. 44: 701-705 (1996) https://doi.org/10.1021/jf950579y
  16. Green LM, Reade JL, Ware CF. Rapid colometric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory Iympokines. J. Immunol. Method 70: 257 (1984)
  17. Gurtu V, Kain SR. and Zhang G. Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal. Biochem. 251: 98-102 (1997) https://doi.org/10.1006/abio.1997.2220
  18. Ana LV, Luiz CT. Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chem. 71: 5216-5220 (2000)
  19. Valero D. Martinez-Romero D, Valverde JM, Guillen F, Serrano M. Quality improvement and extension of shelf life by l-methyl-cyclopropene in plum as affected by rifening stage at harvest. Innov, Food Sci. Emerging Technol. 4: 339-348 (2003) https://doi.org/10.1016/S1466-8564(03)00038-9
  20. Chung KH. Morphological characteristics and principal component analysis of plums. Dept. of Fruit Breeding. National Horticultural Research Institute, R.D.A., Suwon, Korea. pp. 310-440 (1999)
  21. Nakatani N, kayano S, kikuzaki H, Sumino K, Katagiri K, Mitani T. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). J. Agric. Food Chem. 48: 5512-5516 (2000) https://doi.org/10.1021/jf000422s
  22. Sandra AA, Demerval CL, Olga MM, Faria O. Activity of pectinmethylesterase, pectin content and vitamin C in acerola fruit at various stages of fruit development. Food Chem. 74: 133-137 (2001) https://doi.org/10.1016/S0308-8146(01)00104-2
  23. Lee TS, Cheon GJ. In vivo nuclear imaging of apoptosis. J. NucL Med.38: 190-197 (2004)
  24. Majno G, Joris I. Apoptosis oncosis and necrosis: An overview of cell death. Am. J. Pathol. 146: 3-15 (1995)
  25. Jayat C, Ratinaud MH. cell cycle analysis by flow cytometry: principles and applications. Biol. Ceil. 78: 15-25 (1993) https://doi.org/10.1016/0248-4900(93)90110-Z
  26. Nakagawa H, Yamamoto D, Kiyozuka Y, Tsuta K, Uemura Y, Hiok K, Tsutsui Y, Tsubura A. Effects of genistein and synergistric action in combination with eicosapentaenoic acid on the growth of breast cancer cell line. J. Cancer. Res. Chin. Oncol. 126: 448-454 (2000) https://doi.org/10.1007/s004320050012
  27. Kang SS, Rosemary B. Duda Effect of ginseng on the expression of onco-suppressor Gene p21 in human breast cancer cell line. J. Korean Surg Soc. 57: 782-788 (1999)
  28. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Ni AS, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM. FLlCE, a novel FADD-homologus ICE/CED-3-like protease, is recruited to the CD95(Fas/APO-1) death-induction signaling complex. Cell. 85: 817-827 (1996) https://doi.org/10.1016/S0092-8674(00)81266-0
  29. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G; Alnemri ES. Molecular ordering of the Fas apoptotic pathway: the Fas/APO-1 protease is a CrmA-inhibitable protease that activates multiple Ced-3/lCE-like cysteine protease. Proc. Natl. Acad. Sci. 93: 14486-14491 (1996)
  30. Zhou Q, Snipas S, Orth K, Muzio M, Dixit VM, Salvesen GS. Target protease specificity of the viral serpin CnnA. Analysis of five caspases. J. BioI. Chem. 272: 7797-7800 (1997) https://doi.org/10.1074/jbc.272.12.7797
  31. Nam HW. Effect of Selaginella tamarisclna on apoptosis via activation of caspase-3 in HL-60. PhD thesis, Wonkwang University, Seoul, Korea (2002)