Development of Predictive Growth Model of Listeria monocytogenes Using Mathematical Quantitative Assessment Model

수학적 정량평가모델을 이용한 Listeria monocytogenes의 성장 예측모델의 개발

  • Moon, Sung-Yang (Faculty of Marine Bioscience & Technology, Kangnung National University) ;
  • Woo, Gun-Jo (Korea Food and Drug Administration) ;
  • Shin, Il-Shik (Faculty of Marine Bioscience & Technology, Kangnung National University)
  • 문성양 (강릉대학교 해양생명공학부) ;
  • 우건조 (식품의약품안전청) ;
  • 신일식 (강릉대학교 해양생명공학부)
  • Published : 2005.04.30

Abstract

Growth curves of Listeria monocytogenes in modified surimi-based imitation crab (MIC) broth were obtained by measuring cell concentration in MIC broth at different culture conditions [initial cell numbers, $1.0{\times}10^{2},\;1.0{\times}10^{3}\;and\;1.0{\times}10^{4}$, colony forming unit (CFU)/mL; temperature, 15, 20, 25, 37, and $40^{\circ}C$] and applied to Gompertz model to determine microbial growth indicators, maximum specific growth rate constant (k), lag time (LT), and generation time (GT). Maximum specific growth rate of L. monocytogenes increased rapidly with increasing temperature and reached maximum at $37^{\circ}C$, whereas LT and GT decreased with increasing temperature and reached minimum at $37^{\circ}C$. Initial cell number had no effect on k, LT, and GT (p > 0.05). Polynomial and square root models were developed to express combined effects of temperature and initial cell number using Gauss-Newton Algorism. Relative coefficients of experimental k and predicted k of polynomial and square root models were 0.92 and 0.95, respectively, based on response surface model. Results indicate L. monocytogenes growth was mainly affected by temperature and square root model was more effective than polynomial model for growth prediction.

게맛살의 HACCP system에 있어서 critical control point중의 하나인 L. monocytogenes가 오염된 제품에서 균의 성장변화를 정량적으로 예측할 수 있는 수학적 모델의 개발을 위한 기초 자료를 제공하고자 게맛살 성분조성을 고려한 modified imitation crab(MIC) broth에서 온도와 초기균수에 따른 L. monocytogenes의 성장 실험 결과를 데이터베이스화하여 이를 바탕으로 균의 성장을 정량적으로 평가할 수 있는 수학적 모델을 개발하였다. 균의 증식 지표인 최대증식속도상수(k), 유도기(LT), 세대시간(GT)은 온도에 지배적인 영향을 받았으며, 초기균수에 따른 유의적인 차이는 없었다(p>0.05). 최대증식속도상수(k)와 온도 및 초기균수의 상관관계를 나타내는 수학적 정량평가모델인 polynomial model과 square root model을 이용하여 L. monocytogenes 성장을 정량적으로 예측할 수 있는 모델인 $polynomial\;mode(k=0.71{\cdot}exp(-0.5(\;((T-36.05)/11.84)^{2}+((A_{0}+8.12)/21.59)^{2})))$과 square root model($\sqrt{k}$ =0.02(T-(-3.42)) [1-exp(0.36(T-44.51))])을 개발하였으며 실험치와 예측치의 상관관계는 각각 0.92. 0.95로 polynomial model보다 square root model 예측치가 실험치와 상관관계가 더 높은 것으로 나타났다.

Keywords

References

  1. Swerdlow DL, Altekruse SF. Food-borne Diseases in the Global Village. Emerging Infections 2. ScheId WM, Craig WA, Hughes JM (eds), American Society for Microbiology, Washington, DC, USA. pp. 273-294 (1998)
  2. Shin IS, Kim JS, Woo GJ. Application of predictive microbiology for microbiological safety in food. Food Sci. Ind. 36: 18-24 (2003)
  3. Schlech WF, Lavigne PM, Bortolussi RA, Allen AC, Haldane EY, Wort AJ, Hightower AW, Johnson SE, King SH, Nicholas ES, Broome CV, Epidemic listeriosis-evidence for transmission by food. New England J. Med. 308: 203-206 (1983) https://doi.org/10.1056/NEJM198301273080407
  4. Fleming DW, Cochi, SL, Mcdonald KL, Brondrum J, Hayes PS, Plikaytis BD, Holmes MB, Audurier A, Broome CV, Reingold AL. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. New England J. Med. 312: 404-407 (1985) https://doi.org/10.1056/NEJM198502143120704
  5. Linnan MJ, Mascola L, Lou XD, Goulet V, May P, Weaver R, Audurier A, Plikaytis BD, Fannin SL, Kleeks A, Broome CV. Epidemic listeriosis associated with Mexican-style cheese. New England J. Med. 319: 823-828 (1988) https://doi.org/10.1056/NEJM198809293191303
  6. Ross T, Dalgaard P, Tienungoon S. Predictive modelling of the growth and survival of Listeria in fishery products, lnt. J. Food Microbiol. 62: 231-245 (2000) https://doi.org/10.1016/S0168-1605(00)00340-8
  7. Nerbrink E, Borch E, Blom H, Nesbakken T. A model based on absorbance data on the growth of Listeria monocytogenes and including the effects of pH, NaCI, Na-Iactate and Na-acetate. Int. J. Food Microbiol. 47: 99-109 (1999) https://doi.org/10.1016/S0168-1605(99)00021-5
  8. Razavilar V, Genigeorgis C. Prediction of Listeria spp. growth as affected by various levels of chemicals, pH, temperature and storage time in a model broth. Int. J. Food Microbiol. 40: 149-157 (1998) https://doi.org/10.1016/S0168-1605(98)00014-2
  9. Lebert I, Begot C, Lebert A. Development of two Listeria monocytogenes growth models in a meat broth and their application to beef meat. Food Microbiol. 15: 499-509 (1998) https://doi.org/10.1006/fmic.1997.0184
  10. Fernandez PS, George SM, Sills CC, Peck MW. Predictive model of the effect of $CO_2$, pH, temperature and NaCI on the growth of Listeria monocytogenes. Int. J. Food Microbiol. 37: 73-45 (1997)
  11. McClure PJ, Beaumont AL, Sutherland JP, Roberts TA. Predictive modelling of growth of Listeria monocytogenes. The effects on growth of NaCl, pH, storage temperature and $NaN_2$. lnt. J. Food Microbiol. 34: 221-232 (1997) https://doi.org/10.1016/S0168-1605(96)01193-2
  12. Farber JM, Cai Y, Ross WH. Predictive modeling of the growth of Listeria monocytogenes in $CO_2$ environments. Int. J. Food Microbiol. 32: 133-144 (1996) https://doi.org/10.1016/0168-1605(96)01117-8
  13. Moon SY, Chang TE, Woo GJ, Shin IS. Development of predictive growth model Vibrio parahaemoiyticus using mathematical quantitative model. Food Sci. Tech. 36: 349-354 (2004)
  14. AOAC. Official Method of Analysis of AOAC Intl. Method 940.36. Association of Official Analytical Chemists, Arlington, VA, USA (2000)
  15. Ratkowsky DA, Ross T. Modelling the bacterial growth/no growth interface. Lett. Appl. Microbiol. 20: 29-33 (1995) https://doi.org/10.1111/j.1472-765X.1995.tb00400.x
  16. Dunacn DB. Multiple-range and multiple F test. Biometrics 11: 142 (1955)
  17. Robinson TP, Aboaba DO, Kaloti A, Ocio MJ, Baranyi J, Mackey BM. The effect of inoculum size on the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 70: 163-173 (2001) https://doi.org/10.1016/S0168-1605(01)00541-4
  18. Augustin JC, Rosso L. Carlier V. A model describing the effect of temperature history on lag time for Listeria monocytogenes. lnt. J. Food Microbiol. 57: 169-181 (2000) https://doi.org/10.1016/S0168-1605(00)00260-9
  19. Whiting RC, Bagi LK. Modeling the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 73: 291-295 (2002) https://doi.org/10.1016/S0168-1605(01)00662-6
  20. Ratkowsky DA, Lowry RK, Mcmeekin TA, Stokes AN, Chandler RE. Model for bacterial culture growth rate through the entire biokinetic temperature range. J. Bacteriol. 154: 1222-1226 (1983)
  21. Zwietering MH, de Koos JT, Hasenack BE, de Wit, JC, van T Riet K. Modeling of bacterial growth as a function of temperature. Appl. Environ. Milcobiol, 57: 1094-1101 (1991)
  22. Zwietering MH, Cuppers HGAH, de Wit, JC, van T Riet, K. Evaluation of data transformations and validation of a model for the effect of temperature on bacterial growth. Appl. Environ. Microbiol. 60: 195-203 (1994)
  23. Giffel MC, Zwietering MH. Validation of predictive models describing the growth of Listeria monocytogenes. Int. J. Food Microbiol. 46: 135-149 (1999) https://doi.org/10.1016/S0168-1605(98)00189-5
  24. Augustin JC, Vincent C. Modellling the growth rate of Listeria monocytogenes with a multiplicative type model including interactions between environmental factors. lnt. J. Food Microbiol. 56: 53-70 (2000) https://doi.org/10.1016/S0168-1605(00)00224-5