ALTERED EXPRESSION OF SODIUM TRANSPORTERS AND WATER CHANNELS FOLLOWING SYMPATHETIC AND PARASYMPATHETIC DENERVATION IN RAT SUBMANDIBULAR GLAND

흰쥐 악하선에서 교감신경과 부교감신경에 의한 나트륨 운반체 및 수분 통로 조절

  • Kim, Gi-Young (Department of Oral and Maxillofacial Surgery, College of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Ryu, Sun-Youl (Department of Oral and Maxillofacial Surgery, College of Dentistry, Dental Science Research Institute, Chonnam National University)
  • 김기영 (전남대학교 치과대학 구강악안면외과교실) ;
  • 유선열 (전남대학교 치과대학 구강악안면외과교실)
  • Published : 2005.02.28

Abstract

The flow of saliva is controlled entirely by nervous stimuli. The present study was aimed to explore the role of sympathetic and parasympathetic nerves in the regulation of sodium transporters and water channels in the salivary gland. Rats were denervated of their sympathetic and parasympathetic nerves to the submandibular gland, and the expression of sodium transporters and water channels was determined. The expression of either ${\alpha}-1$ or ${\beta}-1$ subunit of Na, K-ATPase was not significantly affected by the sympathetic denervation. On the contrary, the expression of both subunits was decreased by the parasympathetic denervation. The expression of ${\alpha}-,\;{\beta}-$, and ${\gamma}$-subunits of ENaC was not significantly affected by the sympathetic denervation, but was increased by the parasympathetic denervation. On the contrary, the expression of NHE3 was markedly decreased by both the sympathetic and the parasympathetic denervation. The sympathetic denervation significantly increased the expression of AQP1, while the parasympathetic denervation was without effect. The sympathetic and parasympathetic denervation significantly increased the expression of AQP4. The sympathetic denervation did not affect the expression of AQP5, but the parasympathetic denervation significantly decreased it. These results suggest that sympathetic and parasympathetic nerves have tonic effects on the regulation of sodium transporters and AQP water channels in the salivary gland. The sympathetic and parasympathetic denervation may then result in alterations of secretory rate and electrolyte composition of the saliva.

타액선에서 교감 신경과 부교감 신경이 나트륨 운반체와 수분 통로의 조절에 어떠한 기능을 하는지 알아 보고자 흰쥐 악하선을 지배하는 교감 신경과 부교감 신경을 절제하고 나서 타액선내 나트륨 운반체와 수분 통로의 발현을 조사하여 다음과 같은 성적을 얻었다. 1. Na,K-ATPase의 ${\alpha}1,\;{\beta}1$ 소단위는 교감 신경 절제에 의해 크게 영향받지 않았으나 부교감 신경 절제에 의해서는 두 소단위의 발현이 모두 감소되었다. 2. ENaC ${\alpha}-,\;{\beta}-,\;{\gamma}-$ 소단위는 그 발현이 교감 신경 절제에 의해 영향 받지 않았으나 부교감 신경 절제에 의해서 도리어 증가하였다. 3. NHE3는 교감 신경 및 부교감 신경 절제에 의해 모두 크게 감소했다. 4. 교감 신경 절제시 AQP1의 발현이 크게 증가했으나, 부교감 신경 절제시 영향 받지 않았다. 5. 교감 신경 절제 및 부교감 신경 절제는 AQP4 발현을 크게 증가시켰다. 6. AQP5는 교감 신경 절제시 영향을 받지 않았으나, 부교감 신경 절제시 크게 감소되었다. 이상의 실험성적을 요약할 때 악하선을 지배하는 교감 신경 및 부교감 신경은 선의 나트륨 운반체 및 수분 통로 발현에 긴장성 조절을 영위함으로써 타액의 전해질 및 수분 조성을 결정하는 데 공헌함을 알 수 있다. 그리고 이 신경의 절제시 보이는 나트륨 운반체와 수분 통로의 변화는 기능적으로 신경 절제 타액선에서의 타액 분비량과 타액의 무기질 조성 변화의 원인이 될 것이라 생각된다.

Keywords

References

  1. Emmelin N, Henriksson KG: Depressor activity of saliva after section of the chorda tympani. Acta Physiol Scand 1953;30:75-82
  2. Schneyer CA, Yu JH, Jirakulsomchok D: Calcium concentration of salivary glands and saliva after chemical or surgical sympathectomy. J Auton Nerv Syst 1983;8:171-177 https://doi.org/10.1016/0165-1838(83)90103-0
  3. Levin SL, Khaikina LI: Is there neural control over electrolyte reabsorption in the human salivary gland? Clin Sci(London) 1987;72: 541-548
  4. Speight PM, Chisholm DM: The relationship between localization of Na+, K+-ATPase and cellular fine structure in the rat parotid gland. Histochem J 1984;16:721-731 https://doi.org/10.1007/BF01095278
  5. Winston DC, Schulte BA, Garrett JR, Proctor GB: Na+, K(+)-ATPase in cat salivary glands and changes induced by nerve stimulation: an immunohistochemical study. J Histochem Cytochem 1990;38:1187- 1191 https://doi.org/10.1177/38.8.2164061
  6. Peagler FD, Redman RS: Enzyme histochemical localization of Na,K-ATPase and NADH-DE in the developing rat parotid gland. Anat Rec 1999;256: 72-77 https://doi.org/10.1002/(SICI)1097-0185(19990901)256:1<72::AID-AR9>3.0.CO;2-D
  7. Luo X, Choi JY, Ko SB, Pushkin A, Kurtz I, Ahn W, Lee MG, Muallem S: $HCO_{3-}$ salvage mechanisms in the submandibular gland acinar and duct cells. J Biol Chem 276:9808-16 https://doi.org/10.1074/jbc.M008548200
  8. Roussa E: $H^+$ and $HCO_{3-}$ transporters in human salivary ducts. An immunohistochemical study. Histochem J 2001;33:337-344 https://doi.org/10.1023/A:1012471023913
  9. Knepper MA, Kim GH, Fernandez Llama P, Ecelbarger C: Regulation of thick ascending limb transport by vasopressin. J Am Soc Nephrol 1999;10: 628-634
  10. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC: Amiloride-sensitive epithelial $Na^+$ channel is made of three homologous subunits. Nature 1994;367:463-467 https://doi.org/10.1038/367463a0
  11. Bonvalet JP, Rossier B, Farman N: Distribution of amiloride-sensitive sodium channel in epithelial tissue. C R Seances Soc Biol Fil 1995;189: 169-177
  12. Duc C, Farman N, Canessa CM, Bonvalet JP, Rossier BC: Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J Cell Biol 1994;127: 1907-1921 https://doi.org/10.1083/jcb.127.6.1907
  13. Hager H, Kwon TH, Vinnikova AK, Masilamani S, Brooks HL, Frokiaer J, Knepper MA, Nielsen S: Immunocyto-chemical and immunoelectron microscopic localization of alpha-, beta-, and gamma- ENaC in rat kidney. Am J Physiol 2001;280:F1093-F1106
  14. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA: Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 1999;104:R19-R23 https://doi.org/10.1172/JCI7840
  15. Ecelbarger CA, Kim GH, Terris J, Masilamani S, Mitchell C, Reyes I, Verbalis JG, Knepper MA: Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney. Am J Physiol 2000;279:F46-F53
  16. Grunder S, Rossier BC: A reappraisal of aldosterone effects on the kidney: new insights provided by epithelial sodium channel cloning. Curr Opin Nephrol Hypertens 1997;6:35-39 https://doi.org/10.1097/00041552-199701000-00007
  17. Loffing J, Loffing-Cueni D, Macher A, Hebert SC, Olson B, Knepper MA, Rossier BC, Kaissling B: Localization of epithelial sodium channel and aquaporin-2 in rabbit kidney cortex. Am J Physiol 2000;278:F530-F539
  18. Emmelin N, Muren A, Str¨omblad R: Effects of anastomosis between the hypoglossal and chorda-lingual nerves on the supersensitivity of the denervated submaxillary gland. Acta Physiol Scand 1957;41:18- 34 https://doi.org/10.1111/j.1748-1716.1957.tb01507.x
  19. Stromblad BCR: Supersensitivity and amine oxidase activity in denervated salivary glands. Acta Physiol Scand 1956;36:137-153 https://doi.org/10.1111/j.1748-1716.1956.tb01312.x
  20. Garrett JR, Suleiman AM, Anderson LC, Proctor GB: Secretory responses in granular ducts and acini of submandibular glands in vivo to parasympathetic or sympathetic nerve stimulation in rats. Cell Tissue Res 1991;264:117-126 https://doi.org/10.1007/BF00305729
  21. Blair-West JR, Coghlan JP, Denton DA, Wright RD: Effect of endocrines on salivary glands. In Handbookof Physiology, Section 6. Alimentary Canal. Vol II. Pp. 633-664, Washington DC: American Physiological Society, 1967
  22. Moran A, Davis VH, Turner RJ: Na+ channels in membrane vesicles from intralobular salivary ducts. Am J Physiol 1995;268:C350-355
  23. Schmidt-Nielsen B: The pH in parotid and mandibular saliva. Acta Physiol Scand 1946;11:104-110 https://doi.org/10.1111/j.1748-1716.1946.tb00331.x
  24. Hildes JA, Ferguson MH: The concentration of electrolytes in normal human saliva. Can J Biochem Physiol 1955;33:217-225 https://doi.org/10.1139/o55-031
  25. Koyama Y, Yamamoto T, Tani T, Nihei K, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K, Kihara I: Expression and localization of aquaporins in rat gastrointestinal tract. Am J Physiol 1999;276: C621-C627
  26. Gresz V, Kwon TH, Hurley PT, Varga G. Zelles T, Nielsen S, Case RM, Steward MC: Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol 2001;281:G247-G254
  27. Hoque AT, Yamano S, Liu X, Swaim WD, Goldsmith CM, Delporte C, Baum BJ: Expression of the aquaporin 8 water channel in a rat salivary epithelial cell. J Cell Physiol 2002;191:336-341 https://doi.org/10.1002/jcp.10106
  28. Jimi T, Waka yama Y, Murahashi M, Shibuya S, Inoue M, Hara H, Matsuzaki Y, Uemura N: Aquaporin 4: Lack of mRNA expression in the rat regenerating muscle fiber under denervation. Neurosci Lett 2000;291: 93-96 https://doi.org/10.1016/S0304-3940(00)01382-3
  29. Beroukas D, Hiscock J, Jonsson R, Waterman SA, Gordon TP: Subcellular distribution of aquaporin 5 in salivary glands in primary Sjogrens syndrome. Br J Rheumatol 2001;34:326-333 https://doi.org/10.1093/rheumatology/34.4.326
  30. Steinfeld S, Cogan E, King LS, Agre P, Kiss R, Delporte C: Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjogrens syndrome patients. Lab Invest 2001; 81:143-148 https://doi.org/10.1038/labinvest.3780221
  31. Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS: Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 1999;274:20071-20074 https://doi.org/10.1074/jbc.274.29.20071
  32. Krane CM, Melvin JE, Nguyen HV, Richardson l, Towne JE, Doetschman T, Menon AG: Salivary acinar cells from aquaporin 5- deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem 2001;276:23413-23420 https://doi.org/10.1074/jbc.M008760200
  33. Ishikawa Y, Eguchi T, Skowronski MT, Ishida H: Acetylcholine acts on M3 muscarinic receptors and induces the translocation of aquaporin5 water channel via cytosolic Ca2+ elevation in rat parotid glands. Biochem Biophys Res Commun 1998;245:835-40 https://doi.org/10.1006/bbrc.1998.8395
  34. Ishikawa Y, Skowronski MT, Inoue N, Ishida H: 1-Adrenoceptorinduced trafficking of aquaporin-5 to the apical plasma membrane of rat parotid cells. Biochem Biophys Res Commun 1999;265:94-100 https://doi.org/10.1006/bbrc.1999.1630