DOI QR코드

DOI QR Code

Seismic Behaviors of a Bridge System in the Stochastic Perspectives

추계론적 이론을 이용한 교량내진거동분석

  • 마호성 (호서대학교 토목공학과)
  • Published : 2005.12.31

Abstract

Semi-analytical methodology to examine the dynamic responses of a bridge is developed via the joint probability density function. The evolution of joint probability density function is evaluated by the semi-analytical procedure developed. The joint probability function of the bridge responses can be obtained by solving the path-integral solution of the Fokker-Planet equation corresponding to the stochastic differential equations of the system. The response characteristics are observed from the joint probability density function and the boundary of the envelope of the probability density function can provide the maxima ol the bridge responses.

본 연구에서는 지진하중을 받는 교량의 거동을 확률밀도함수를 통하여 분석할 수 있는 기법을 개발하였다. 확률밀도함수의 전개는 추계론적 이론을 이용한 반해석적 방법을 통하여 구하였으며, 반해석적 방법은 교량운동방정식으로부터 상응하는 Fokker-Planck equation을 구한 후, path-integral solution을 유도하여 이를 수치적으로 해석함으로써 구할 수 있다. 교량거동의 확률밀도 함수전개로부터 교량거동의 확률적 특성을 파악하고 확률밀도함수의 범위로부터 교량응답거동의 포락선을 얻을 수 있으며 이를 이용하여 최대응답의 범위를 결정할 수 있다는 것을 밝혔다.

Keywords

References

  1. 마호성, 'Fokker-Planck 방정식의 Path-Integral solution을 이용한 구분적선형시스템의 비선형동적거동 분석,' 전산구조공학회, 1999, pp. 251-264
  2. Davies, H. G. and Liu, Q. 'The Response Envelope Probability Density Function of a Duffing Oscillator with Random Narrow-Band Excitation,' Journal of Sound and Vibration, 139, 1990, pp. 1-8 https://doi.org/10.1016/0022-460X(90)90770-Z
  3. Graham, R. 'Path Integral Formulation of General Diffusion Processes,' Zeitschrift fur Physik B, 26, 1977, pp. 281-290 https://doi.org/10.1007/BF01312935
  4. Haken, H. 'Generalized Onsager-Machlup Function and Classes of Path Integral Solutions of the Fokker-Planck Equation and the Master Equation,' Zeitschrijt fur Physik B, 24, 1976, pp. 321-326 https://doi.org/10.1007/BF01360904
  5. Jung, P. and Hanggi, P. 'Invariant Measure of a Driven Nonlinear Oscillator with External Noise,' Physical Review Letters, 65(27), 1990, pp.3365-3368 https://doi.org/10.1103/PhysRevLett.65.3365
  6. Mha, H.S. and Yim, S. C-S. 'Stochastic Dynamics of a Piecewise-Linear Ocean System,' Proceedings ofthe 7th International Conference of Computing in Civil and Building Engineering (ICCCBE-VII), Vol. 3, 1997, pp. 1643-1648
  7. Ochi, M. K. Applied Probability & Stochastic Processes in Engineering and Physical Sciences, John Wiley & Sons, New York. 1990
  8. Risken, H. The Fokker-Planck Equation, Springer-Verlag, Berlin Heidelberg 1984
  9. Shinozuka, M. 'Simulation of Multivariate and Multidimensional Random Processes,' Journal of the Acoustical Society of America, 49, 1977, pp. 357-367 https://doi.org/10.1121/1.1912338
  10. Wehner, M. F. and Wolfer, W. G. 'Numerical evalua!ion of path-integral solution to Fokker-Planck Equations,' Physical Review A, 27(5), 1983, pp. 2663-2670 https://doi.org/10.1103/PhysRevA.27.2663
  11. Wissel, C. 'Manifolds of Equivalent Path Integral Solutions of the Fokker-Planck Equation,' Zeitschrift fur Physik B, 35, 1979, pp. 185-191 https://doi.org/10.1007/BF01321245