Growth of Stahylococcus aureus with Defective Siderophore Production in Human Peritoneal Dialysate Solution

  • Park, Ra-Young (Research Center for Resistant Cells, Chosun University Medical School) ;
  • Sun, Hui-Yu (Research Center for Resistant Cells, Chosun University Medical School) ;
  • Choi, Mi-Hwa (Research Center for Resistant Cells, Chosun University Medical School) ;
  • Bae, Young-Hoon (Department of Biology, Chosun University Medical School) ;
  • Shin, Sung-Heui- (Research Center for Resistant Cells, Chosun University Medical School)
  • 발행 : 2005.02.28

초록

In this study, we attempted to determine the effects of iron-availability and the activity of the bacterial iron-uptake system (IUS) on the growth of Staphylococcus aureus in human peritoneal dialysate (HPD) solution. A streptonigrin-resistant S. aureus (SRSA) strain, isolated from S. aureus ATCC 6538, exhibited defective siderophore production, thereby resulting in ineffective uptake of iron from low iron-saturated transferrin. The growth of both strains was stimulated in HPD solution supplemented with FeCl_3 and holotransferrin, but growth was inhibited in HPD solution which had been supplemented with apotransferrin and dipyridyl. The SRSA strain grew less robustly than did its parental strain in both iron-supplemented HPD solution and regular HPD solution. These results indicate that iron-availability and siderophore-mediated IUS activity in particular, the ability to produce siderophores and thus capture iron from low iron-saturated transferrin play critical roles in the growth of S. aureus in HPD solution. Our results also indicated that the possibility of using iron chelators as therapeutic or preventive agents warrants further evaluation.

키워드

참고문헌

  1. Ahn, Y.J., S.K. Park, J.W. Oh, H.Y. Sun, and S.H. Shin. 2004. Bacterial growth in amniotic fluid is dependent on iron-availability and the activity of bacterial iron-uptake system. J. Korean Med. Sci. 19, 333-340 https://doi.org/10.3346/jkms.2004.19.3.333
  2. Bonsdorff, L., L. Sahlstedt, F. Ebeling, T. Tuutu, and J. Parkkinen. 2003. Apotransferrin administration prevents growth of Staphylococcus epidermidis in the serum of stem cell transplant patients by biding of free iron. FEMS Immunol. Med. Microbiol. 37, 45-51 https://doi.org/10.1016/S0928-8244(03)00109-3
  3. Brock, J.H., P.H. Williams, J. Liceaga, and K.G. Wooldridge. 1991. Relative availability of transferrin-bound iron and cell-derived iron to aerobactin-producing and enterochelin-producing strains of Escerichia coli and to other microorganisms. Infect. Immun. 59, 3185-3190
  4. Brown, J.S. and D.W. Holden. 2002. Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect. 4, 1149-1156 https://doi.org/10.1016/S1286-4579(02)01640-4
  5. Cabrera, G., A. Xiong, M. Uebel, V.K. Singh, and R.K. Jayaswal. 2001. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus. Appl. Environ. Microbiol. 67, 1001-1003 https://doi.org/10.1128/AEM.67.2.1001-1003.2001
  6. Chung, J.H., M.H. Park, J.H. Kim, Y. Lim, and S.H. Shin. 2003. Growth and siderophore production of staphylococci in human peritoneal dialysate. J. Korean Med. Sci. 18, 158-162 https://doi.org/10.3346/jkms.2003.18.2.158
  7. Clarke, S.R., M.D. Wiltshire, and S.J. Foster. 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol. Microbiol. 51, 1509-1519 https://doi.org/10.1111/j.1365-2958.2003.03938.x
  8. Dale, S.E., A. Doherty-Kirby, G. Lajoie, and D.E. Heinrichs. 2004. Role of siderophore biosynthesis in virulence of Staphylococcus aureus: Identification and characterization of genes involved in production of a siderophore. Infect. Immun. 72, 29-37 https://doi.org/10.1128/IAI.72.1.29-37.2004
  9. Emori, T.G. and R.P. Gaynes. 1993. An overview of nosocomial infections including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6, 428-442 https://doi.org/10.1128/CMR.6.4.428
  10. Lindsay, J.A. and T.V. Riley. 1994. Staphylococcal iron requirements, siderophore production, and iron-regulated protein expression. Infect. Immun. 62, 2309-2314
  11. Makey, D.G. and U.S. Seal. 1988. The detection of four molecular forms of human transferrin during the iron binding process. Biochem. Biophys. Acta. 453, 250-256
  12. Martinaho, S., L. von Bonsdorff, A. Rouhiainen, M. Lonnroth, and J. Parkkinen. 2001. Dependence of Staphylococcus epidermidis on non transferrin-bound iron for growth. FEMS Microbiol. Lett. 196, 177-182 https://doi.org/10.1111/j.1574-6968.2001.tb10561.x
  13. Mazmanian, S.K., E.P.Skaar, A.H. Gaspar, M. Humayun, P. Gornicki, J. Jelenska, A. Joachmiak, D.M. Missiakas, and O. Schneewind. 2003. Passage of heme iron across the envelope of Staphylococcus aureus. Science 299, 906-909 https://doi.org/10.1126/science.1081147
  14. Modun, B., A.Cockayne, R. Finch, and P. Williams. 1998. The Staphylococcus aureus and Staphylococcus epidermidis transferrin- binding proteins are expressed in vivo during infection. Microbiology 144, 1005-1012 https://doi.org/10.1099/00221287-144-4-1005
  15. Modun, B., D. Kendall, and P. Williams. 1994. Staphylococci express a receptor for human transferrin: Identification of a 42- kilodalton cell wall transferrin-binding protein. Infect. Immun. 62, 3850-3858
  16. Ratledge, C. and L.G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54, 881-941 https://doi.org/10.1146/annurev.micro.54.1.881
  17. Rozalska, B., P. Lisiecki, B. Sadowska, J. Mikucki, and W. Rudnicka. 1998. The virulence of Staphylococcus aureus isolates differing by siderophore production. Acta. Microbiol. Pol. 47, 185-194
  18. Sebulsky, M.T. and D.E. Heinrichs. 2001. Identification and characterization of fhuD1 and fhuD2, two genes involved in ironhydroxamate uptake in Staphylococcus aureus. J. Bacteriol. 183, 4994-5000 https://doi.org/10.1128/JB.183.17.4994-5000.2001
  19. Sebulsky, M.T., D. Hohnstein, M.D. Hunter, and D.E. Heinrichs. 2000. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J. Bacteriol. 182, 4394-4400 https://doi.org/10.1128/JB.182.16.4394-4400.2000
  20. Shin, S.H., Y. Lim, S.E. Lee, N.W. Yang, and J.H. Rhee. 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 44, 89-95 https://doi.org/10.1016/S0167-7012(00)00229-3
  21. Sieradzki, K., R.B. Roberts, S.W. Haber, and A. Tomasz. 1999. The development of vancomycin resistance in a patient with methicillin- resistant Staphylococcus aureus infection. N. Engl. J. Med. 340, 517-523 https://doi.org/10.1056/NEJM199902183400704
  22. Taylor, J.M. and D.E. Heinrichs. 2002. Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein. Mol. Microbiol. 43, 1603-1614 https://doi.org/10.1046/j.1365-2958.2002.02850.x
  23. Trivier, D. and R.J. Courcol. 1996. Iron depletion and virulence in Staphylococcus aureus. FEMS Microbiol. Lett. 141, 117-127 https://doi.org/10.1111/j.1574-6968.1996.tb08373.x
  24. Trivier, D., M. Devril, N. Houdret, and R.J. Courcol. 1995. Influence of iron depletion on growth kinetics, siderophore production, and protein expression of Staphylococcus aureus. FEMS Microbiol. Lett. 127, 195-200 https://doi.org/10.1111/j.1574-6968.1995.tb07473.x
  25. von Graevenitz, A. and D. Amsterdam. 1992. Microbiological aspects of peritonitis associated with continuous ambulatory peritoneal dialysis. Clin. Microbiol. Rev. 5, 36-48 https://doi.org/10.1128/CMR.5.1.36
  26. Yeowell, H.N. and J.R. White. 1982. Iron requirement in the bactericidal mechanism of streptonigrin. Antimicrob. Agents Chemother. 22, 961-968 https://doi.org/10.1128/AAC.22.6.961