The Diversity of Culturable Organotrophic Bacteria from Local Solar Salterns

  • Yeon, Sun-Hee (Department of Microbiology, Hannam University) ;
  • Jeong, Won-Jin (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Jin-Sook (Department of Microbiology, Hannam University)
  • 발행 : 2005.02.28

초록

We isolated and cultured bacteria inhabiting solar saltern ponds in Taean-Gun, Chungnam Province, Korea. All of the isolated 64 strains were found to be moderately halophilic bacteria, growing in a salt range of 2-20 %, with an optimal concentration of 5% salt. Bacterial diversity among the isolated halophiles was evaluated via RFLP analyses of PCR-amplified 16S rDNAs, followed by phylogenetic analysis of the partial 16S rDNA sequences. The combination of restriction enzyme digestions with HaeIII, CfoI, MspI and RsaI generated 54 distinct patterns. A neighbor-joining tree of the partial 16S rDNA sequences resulted in the division of the 64 strains into 2 major groups, 45 strains of ${\gamma}-Proteobacteria$ (70.3%) and 19 strains of Firmicutes (29.7%). The ${\alpha}-Proteobacteria$ and Cytophaga-Flavobacterium-Bacterioides groups, which were repeatedly found to exist in thalassohaline environments, were not represented in our isolates. The ${\gamma}-Proteobacteria$ group consisted of several subgroups of the Vibrionaceae (37.5%), Pseudoalteromonadaceae (10.9%), Halomonadaceae (7.8%), Alteromonadaceae (7.8%), and Idiomarinaceae (6.3%). Members of Salinivibrio costicola (29.7%) were the most predominant species among all of the isolates, followed by Halobacillus treperi (12.5%). Additionally, three new species candidates were found, based on similarities of the 16S rDNA sequences to those of previously published species.

키워드

참고문헌

  1. Anton, J., R. Rossello-Mora, F. Rodriguez-Valera, and R. Amann. 2000. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66, 3052-3057 https://doi.org/10.1128/AEM.66.7.3052-3057.2000
  2. Britschi, T.B. and S.J. Giovannoni. 1991. Phylogenetic analysis of a natural marine bacterioplakton population by rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 61, 1707-1713
  3. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph. D. thesis. University of Newcastle, Newcastle upon Tyne, UK
  4. Cheneby, C., L. Philippot, A. Hartmann, C. Henault, and J.-C. Germon, 2000. 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiol. Ecol. 34, 121-128 https://doi.org/10.1016/0378-1097(86)90283-1
  5. Donachie, S.P., S. Hou, T.S. Gregory, A. Malahoff, and M. Alam. 2003. Idiomarina loihiensis sp. nov., a halophilic $\gamma$-Proteobacterium from the Lo'ihi submarine volcano, Hawaii. Int. J. Syst. Evol. Microbiol. 53, 1873-1879 https://doi.org/10.1099/ijs.0.02701-0
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootsrap. Evolution 39, 783-791 https://doi.org/10.2307/2408678
  7. Fry, J.C. 2004. Culture-dependent Microbiology, p. 80-97. In A.T. Bull (ed.), Microbial Diversity and Bioprospecting-2004, American Society for Microbiology, Washington, D.C
  8. Gray, J.P. and R.P. Herwing. 1996. Phylogenetic analysis of the bacterial communitities in marine sediments. Appl. Environ. Microbiol. 62, 4049-4059
  9. Guixa-Boixereu, N., J. I. Calderon-Paz, M. Heldal, G. Bratbak, and C. Pedros-Alio. 1996. Viral lysis and bacterivory as prokaryotic loss facters along a salinity gradient. Aquat. Microb. Ecol. 11, 215-227 https://doi.org/10.3354/ame011215
  10. Huang, C.Y., J.L. Garcia, B.K. Patel, J.L. Cayol, L. Baresi, and R.A. Mah. 2000. Salinivibrio costicola subsp. vallismortis subsp. nov., a halotolerant facultative anaerobe from Death Valley, and emended description of Salinivibrio costicola. Int. J. Syst. Evol. Microbiol. 50, 615-622 https://doi.org/10.1099/00207713-50-2-615
  11. Hur, I. and J. Chun. 2004. A method for comparing multiple bacterial community structures from 16S rDNA colne library sequences. J. Microbiol. 42, 9-13
  12. Ivanova, E.P., L.A. Romanenko, J. Chun, M.H., Matte, G.R. Matte, V.V. Mikhailov, V.I. Svetashev, A. Huq, T. Maugel, and R.R. Colwell. 2000. Idiomarina gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp. nov. and Idiomarina zobellii sp. nov. Int. J. Syst. Evol. Microbiol. 50, 901-907 https://doi.org/10.1099/00207713-50-2-901
  13. Ivanova, E.P., T. Sawabe, A.M. Lysenko, N.M. Gorshkova, V.I. Svetashev, D.V. Nicolau, N. Yumoto, T. Taguchi, S. Yoshikawa, R. Christen, and V.V. Mikhailov. 2002. Pseudoalteromonas ruthenica sp. nov., isolated from marine invertebrates. Int. J. Syst. Evol. Microbiol. 52, 235-240 https://doi.org/10.1099/00207713-52-1-235
  14. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequence. J. Mol. Evol. 16, 111-120 https://doi.org/10.1007/BF01731581
  15. Kis-Papo, T. and A. Oren. 2000. Halocins: are they involved in the competition between halobacteria in saltern ponds. Extremophiles 4, 35-41 https://doi.org/10.1007/s007920050005
  16. Kushner, D.J. 1978. Life in high salt and solute concentrations: halophilic bacteria, p. 317-368. In D. J. Kushner (ed.), Microbial life in extreme environments. Academic Press, Ltd., London, United Kingdom
  17. Kushner, D.J. 1985. The Halobacteriaceae, p. 171-214. In Woese, C.R. & Wolfe, R.S. (ed.), The Bacteria, vol. VIII. Academic Press, London
  18. Kushner, D.J. and M. Kamekura. 1988. Physiology of halophilic eubacteria, p. 109-140. In Rodriguez-Valera F. (ed.), Halophilic Bacteria, vol. 1. CRC Press, Boca Raton
  19. Lee, J.H., H.-H. Shin, D.-S. Lee, K.K. Kwon, S.-j. Kim, and H.K. Lee. 1999. Bacterial diversity of culturable isolates from seawater and a marine coral, Plexauridae sp., near Mun-Sum, Cheju-Island. J. Microbiol. 37, 193-199
  20. Lee, Y.K., K.-K. Kwon, K.H. Cho, H.Y. Kim, J.H. Park, and H.K. Lee. 2003. Culture and identification of bacteria from marine biofilms. J. Microbiol. 41, 183-188
  21. Lim, J.-M., C.O. Jeon, S.M. Song, and C.-J. Kim. 2005. Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea. Int. J. Syst. Evol. Microbiol 55, 165-170 https://doi.org/10.1099/ijs.0.63315-0
  22. Liu, P.C., Y.C. Chen, and K.K. Lee, 2001. Pathogenicity of Vibrio alginolyticus isolated from diseased small abalone Haliotis diversicolor supertexta. Microbios. 104, 71-77
  23. Margesin, R. and F. Schinner. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73-83 https://doi.org/10.1007/s007920100184
  24. Martinez-Canovas, M.J., E. Quesada, I. Llamas, and V. Bejar. 2004. Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 54, 733-737 https://doi.org/10.1099/ijs.0.02942-0
  25. Martin-Laurent, F., L. Philippot, S. Hallet, R. Chaussod, J. C. Germon, G. Soulas, and G. Catroux. 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol., 67, 2354-2359 https://doi.org/10.1128/AEM.67.5.2354-2359.2001
  26. Muller V. and A., Oren. 2003. Metabolism of chloride in halophilic prokaryotes. Extremophiles 7, 261-266 https://doi.org/10.1007/s00792-003-0332-9
  27. Norton, C. 1992. Rediscovering the ecology of halobacteria. American Society for Microbiology, News 58, 363-367
  28. Oren, A. 1994. The ecology of the extremely halophilic archaea. FEMS Microbiol. Rev. 13, 415-440 https://doi.org/10.1111/j.1574-6976.1994.tb00060.x
  29. Oren, A. 2002. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28, 56-63 https://doi.org/10.1038/sj/jim/7000176
  30. Quesada, E., M.J.Valderrama, V. Bejar, A. Ventosa, M.C.Gutierrez F. Ruiz-Berranquero, and A. Ramos-Cormenzana. 1990. Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int. J. Syst. Bacteriol. 40, 261-267 https://doi.org/10.1099/00207713-40-3-261
  31. Prieme, A., G. Braker, and J.M. Tiedje. 2002. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Appl. Environ. Microbiol. 68, 1893-1900 https://doi.org/10.1128/AEM.68.4.1893-1900.2002
  32. Rodriguez-Valera, F. 1988. Characteristics and microbial ecology of hypersaline environments, p. 3-30. In F. Rodriguez-Valera (ed.), Halophilic bacteria, vol. 1. CRC Press, Boca Raton
  33. Rodriguez-Valera, F., A. Ventosa, G. Juez, and J. F. Imhoff. 1985. Variation of enviromental features and microbial populations with salt concentrations in a multi-pond slatern. Microb. Ecol. 11, 107-115 https://doi.org/10.1007/BF02010483
  34. Savelkoul, P.H.M., H.J.M. Aarts, J. De Haas, L. Dijkshoorn, B. Duim, M. Otsen, J.L.W. Rademaker, L. Schouls, and J.A. Lenstra. 1999. Amplified-fragment length polymorphism analysis: the state of an art. J. Clin. Microbiol. 37, 3083-3091
  35. Spring, S., W. Ludwig, M. C. Marquez, A. Ventosa, and K.-H. Schleifer. 1996. Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sprosarcina halophila to Halobacillus halophilus comb. nov. Int. J. Syst. Bacteriol. 46, 492-496 https://doi.org/10.1099/00207713-46-2-492
  36. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G.Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882
  37. Urakawa, H., K. Kita-Tsukamoto, and K. Ohwada. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145, 3305-3315 https://doi.org/10.1099/00221287-145-11-3305
  38. Vauterin, L. and P. Vauterin. 1992. Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur. Microbiol. 1, 37-41
  39. Ventosa, A., J. Nieto, A. Oren. 1998a. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504-544
  40. Ventosa, A., M.C. Marquez, M.J. Garabito, and D.R. Arahal. 1998b. Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles 2, 297-304 https://doi.org/10.1007/s007920050072
  41. Yoon, Y.-J., K.-H. Im, Y.-H. Koh, S.-K. Kim, and J.-W. Kim. 2003. Genotyping of six pathogenic Vibrio species based on RFLP of 16S rDNAs for rapid identification. J. Microbiol. 41, 312-319
  42. Yoon, J.-H., I.-G. Kim, K.H. Kang, T.-K. Oh, Y.-H. Park. 2004a. Bacillus hwajinpoensis sp. nov. and an unnamed Bacillus genomospecies, novel members of Bacillus rRNA group 6 isolated from seawater of the East Sea and the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 54, 803-808 https://doi.org/10.1099/ijs.0.02678-0
  43. Yoon, J.-H., S.-H. Yeo, I.-G. Kim, and T.-K. Oh. 2004b. Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 54, 1799-1803 https://doi.org/10.1099/ijs.0.63151-0