산소 미세전극을 이용한 강화군과 인천 북항 조간대 갯벌의 순광합성률 측정

Measurement of Net Photosynthetic Rates in Intertidal flats of Ganghwa-gun and Incheon North Harbor using Oxygen Microsensors

  • 황청연 (서울대학교 지구환경과학부 및 해양연구소) ;
  • 조병철 (서울대학교 지구환경과학부 및 해양연구소)
  • Hwang, Chung-Yeon (School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University) ;
  • Cho, Byung-Cheol (School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University)
  • 발행 : 2005.02.28

초록

갯벌에서 순 광합성률의 시기적 변화를 살펴보기 위해 강화군의 서남단과 남단에 각각 위치한 장화리와 동막리의 조간대 갯벌과, 유기물 함량이 상대적으로 높은 인천 북항 조간대 갯벌을 대상으로 2003년 12월부터 2004년 6월까지 4회에 걸쳐 산소 미세전극을 이용하여 퇴적물 내 산소 농도의 수직 분포를 측정하였다. 조사 기간 동안 장화리와 동막리 갯벌에서 산소의 퇴적물 투과 깊이는 12월에 가장 컸으며(평균 $4.0{\sim}4.1\;mm)$),이후 조사에서는 각각 평균 $2.2{\sim}2.8\;mm$$1.6{\sim}l.8\;mm$의 값으로 작아지는 경향을 보였다. 흥미롭게도 인천 북항 갯벌의 산소 투과 깊이는 시기에 관계없이 $0.8{\pm}0.3\;mm$(평균${\pm}ISD$)의 작은 값을 나타냈다. 순 광합성률은 동막리 갯벌에서 3월에 최대값$(11.1{\pm}2.8\;mmol\;O_2\;m^{-2}\;h^{-1})$을 보였으며 장화리와 인천 북항 갯벌에서는 5월에 각각 $6.1{\pm}4.1\;mmol\;O_2\;m^{-2}\;h^{-1}$$6.4{\pm}1.4\;mmol\;O_2\;m^{-2}\;h^{-1}$의 최대값을 보였다. 순 광합성률이 최대값을 보인 시기에, 퇴적물 내 공극수의 용존 산소 농도의 최대값은 깊이 $0.1{\sim}0.5\;mm$구간에서 관찰되었으며, 대기로 포화된 표층 해수의 용존 산소 농도에 비해 평균적으로 $1.8{\sim}3.2$배 높았다. 6월 조사 당일에 현장의 광량(400 ${\mu}Einst\;m^{-2}\;s^{-1}$)이 다른 조사 시기에 비해 낮았지만, 이를 감안하더라도 세 지역의 순 광합성률은 크게 감소하여 $0.2\;mmol\;O_2\;m^{-2}\;h^{-1}$이하의 값을 나타냈다. 결론적으로, 순 광합성률의 시기적인 변화 양상은 연구 지역에 따라 다소 차이가 있었지만, 대개 봄철에 표층 0.5mm이내에 분포하는 저서 일차 생산자에 의해 광합성이 가장 활발하게 일어나는 것으로 나타났다. 본 연구는 산소 미세전극을 이용한 갯벌의 광합성 연구에 대한 국내에서의 첫 보고이며, 이 기술은 갯벌의 일차 생산력이나 표층 퇴적물의 산소 소모율 등을 추정하는데 유용하게 활용될 수 있을 것으로 여겨진다.

To find out temporal variations of net photosynthetic rate (NPR) of intertidal flats, we measured oxygen microprofiles in sediments with oxygen microsensors 4 times from December 2003 to June 2004. The study areas were the intertidial flats in Janghwa-ri and Dongmak-ri, located on the southwestern and the southern parts of Ganghwa-gun, respectively, and in Incheon North Harbor where the content of organic matter was relatively high. During the investigation, oxygen penetration depths in the tidal flats of Janghwa-ri and Dongmak-ri were high in December (mean values of 4.0-4.1 mm). Thereafter, the oxygen penetration depths declined to mean values of 2.2-2.8 mm and 1.6-1.8 mm in the two tidal flats. Interestingly, the oxygen penetration depths in the Incheon North Harbor tidal flat showed a lower range $(0.8{\pm}0.3\;mm;\;mean{\pm}1SD)$ over the period. The maximum NPR in the Dongmak-ri tidal flat was found in March $(11.1{\pm}2.8\;mmol\;O_2\;m^{-2}\;h^{-1})$, and those In Janghwa-ri $(6.1{\pm}4.1\;mmol\;O_2\;m^{-2}\;h^{-1})$ and Incheon North Harbor $(6.4{\pm}1.4\;mmol\;O_2\;m^{-2}\;h^{-1})$ were observed in May. During the period when NPR was most active, the highest oxygen concentration was found at 0.1-0.5 mm depth below the surface sediment, and was on average 1.8-3.2 times higher than the air-saturated oxygen concentration in the overlying seawater. Although we took into account of low in situ light intensity $(400{\mu}Einst\;m^{-2}\;s^{-1})$ during the investigation in June, NPR in the 3 study areas decreased significantly to less than $0.2\;mmol\;O_2\;m^{-2}\;h^{-1})$. Thus, temporal variations of NPR were somewhat different among the tidal flats. Generally, benthic primary producers inhabiting in the uppermost 0.5 mm of the sediment showed a peak photosynthetic activity in the study areas in spring. This is the first domestic report on photosynthetic rates of benthic microflora in the tidal flats with oxygen microsensors, and the use of the microsensor can be widely applied to measurements of benthic primary production of a tidal flat and the oxygen consumption rate of surficial sediments.

키워드

참고문헌

  1. 고철환, 2001. 한국의 갯벌. 서울대학교 출판부, 103 pp
  2. 조병철, 최중기, 이동섭, 안순모, 현정호 등, 2004. 갯벌에서 미생물에 의한 생지화학적 오염 정화능 판정기술 개발-경기만 갯벌을 중심으로. 해양수산부 보고서, 174pp
  3. Asmus, R., 1982. Field measurements of seasonal variation of the activity of primary producers on a sandy tidal flat in the Northerm Wadden Sea. Neth. J. Sea. Res., 16: 389-402 https://doi.org/10.1016/0077-7579(82)90045-X
  4. Bennett, R.H. and D.N. Lambert, 1971. Rapid and reliable technique for determining unit weight and porosity of deep-sea sediments. Marine Geol., 11: 201-207 https://doi.org/10.1016/0025-3227(71)90007-7
  5. Cadee, G.C. and J. Hegeman, 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea. Res., 8: 260-291 https://doi.org/10.1016/0077-7579(74)90020-9
  6. Clark, L.C., R. Wolf, D. Granger and A. Taylor, 1953. Continuous recording of blood oxygen tension by polarography. J. Appl. Physiol.,6: 189-193
  7. Garcia, H.E. and L.I. Gordon, 1992. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr., 37: 1307-1312 https://doi.org/10.4319/lo.1992.37.6.1307
  8. Glud, R.N. and M. Kuhl, 1999. Heterogeneity of oxygen production and consumption in a photosynthetic microbial mat as studied by planar optodes. J. Phycol., 35: 270-279 https://doi.org/10.1046/j.1529-8817.1999.3520270.x
  9. Glud, R.N., N.B. Ramsing and N.P. Revsbech, 1992. Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors. J. Phycol., 28: 51-60 https://doi.org/10.1111/j.0022-3646.1992.00051.x
  10. Goto, N., O. Mitamura and H. Terai, 2000. Seasonal variation in primary production of microphytobenthos at the Isshiki intertidal flat in Mikawa Bay. Limnology, 1: 133-138 https://doi.org/10.1007/s102010070019
  11. Gould, D.M. and E.D. Gallagher, 1990. Field measurement of specific growth rate, biomass, and primary production of benthic diatoms of Savin Hill Cove, Boston. Limnol. Oceanogr., 35: 1757-1770 https://doi.org/10.4319/lo.1990.35.8.1757
  12. Kuipers, B.R., P.A.W.J. de Wilde and F. Creutzberg, 1981. Energy flow in a tidal flat ecosystem. Mar. Ecol. Prog. Ser., 5: 215-221 https://doi.org/10.3354/meps005215
  13. Kuhl, M., R.N. Glud, H. Ploug and N.B. Ramsing, 1996. Microenvironmental control of photosynthesis and photosynthesis-copled respiration in an epilithic cyanobacterial biofilm. J. Phycol., 32: 799-812 https://doi.org/10.1111/j.0022-3646.1996.00799.x
  14. Leach, J.H., 1970. Epibenthic algal production in an intertidal mudflat. Limnol. Oceanogr., 15: 514-521 https://doi.org/10.4319/lo.1970.15.4.0514
  15. Li, Y.H. and S. Gregory, 1974. Diffusion of ions in sea water and in deep-sea sediment. Geochim. Cosmochim., 38: 703-714 https://doi.org/10.1016/0016-7037(74)90145-8
  16. Lorenzen, J., L.H. Larsen, T. Kjer and N.P. Revsbech, 1998. Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatominhabited freshwater sediment. Appl. Environ. Microbiol., 64: 3264-3269
  17. MacIntyre, H.L., R.J. Geider and D.C. Miller, 1996. Microphytobenthos: the ecological role of the 'Secret Garden' of unvegetated, shallow-water marine habitat. I. Distribution, abundance and primary production. Estuaries, 19: 186-201 https://doi.org/10.2307/1352224
  18. Nielsen, L.P., P.B. Christensen and N.P. Revsbech, 1990. Denitrification and photosynthesis in stream sediment studied with microsen sors and whole-core techniques. Limnol. Oceanogr., 35: 1135-1144 https://doi.org/10.4319/lo.1990.35.5.1135
  19. Pomeroy, L.R, 1959. Algal productivity in salt marshes of Georgia. Limnol. Oceanogr., 4: 386-397 https://doi.org/10.4319/lo.1959.4.4.0386
  20. Revsbech, N.P. and B.B. Jorgensen, 1983. Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: capabilities and limitation of the method. Limnol. Oceanogr., 28: 749-756 https://doi.org/10.4319/lo.1983.28.4.0749
  21. Revsbech, N.P. and B.B. Jorgensen, 1986. Microelectrodes: their use in microbial ecology. Adv. Microb. Ecol., 9: 293-352
  22. Revsbech, N.P. and D.M. Ward, 1983. Oxygen microelectrode that is insensitive to medium chemical composition: use in an acid microbial mat dominated by Cyanidium caldarium. Appl. Environ. Microbiol., 45: 755-759
  23. Revsbech, N.P., 1989. An oxygen microsensor with a guard cathode. Limnol. Oceanogr., 34: 474-478 https://doi.org/10.4319/lo.1989.34.2.0474
  24. Revsbech, N.P., B. Madsen and B.B. Jorgensen, 1986. Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data. Limnol. Oceanogr., 31: 293-304 https://doi.org/10.4319/lo.1986.31.2.0293
  25. Revsbech, N.P., B.B. Jorgensen and O. Brix, 1981. Primary production of microalgae in sediments measured by oxygen microprofile, $H^{14}CO_{3}$fixation and oxygen exchange methods. Limnol. Oceanogr., 26: 717-730 https://doi.org/10.4319/lo.1981.26.4.0717
  26. Revsbech, N.P., B.B. Jorgensen, T.H. Blackburn and Y. Cohen, 1983. Microelectrode studies of the photosynthesis and $O_{2}$, $H_{2}S$, and pH profiles of a microbial mat. Limnol. Oceanogr., 28: 1062-1074 https://doi.org/10.4319/lo.1983.28.6.1062
  27. Revsbech, N.P., J. Sorensen, T.H. Blackburn and J.P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr., 25: 403-411 https://doi.org/10.4319/lo.1980.25.3.0403
  28. Shaffer, G.P., 1988. K-systems analysis for determining the factors influencing benthic microfloral productivity in a Louisiana estuary, USA. Mar. Ecol. Prog. Ser., 43: 43-54 https://doi.org/10.3354/meps043043
  29. Ullman, W.J. and R.C. Aller, 1982. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr., 27: 552-556 https://doi.org/10.4319/lo.1982.27.3.0552
  30. van Es, F.B., 1982. Community metabolism of intertidal flats in the Ems-Dollard estuary. Mar. Biol., 66: 95-108 https://doi.org/10.1007/BF00397260
  31. Wolfstein, K. and P. Hartig, 1998. The photosynthetic light dispensation system: application to microphytobenthic primary production measurements. Mar. Ecol. Prog. Ser., 166: 63-71 https://doi.org/10.3354/meps166063