뇌기능영상 측정법을 이용한 영재성 평가의 타당성 연구

A Neurobiological Measure of General Intelligence in the Gifted

  • 조선희 (서울대학교 생물교육과) ;
  • 김희백 (서울대학교 생물교육과) ;
  • 최유용 (서울대학교 뇌과학협동과정) ;
  • 채정호 (가톨릭대학교 정신과학교실) ;
  • 이건호 (서울대학교 생명과학부)
  • 발행 : 2005.06.30

초록

본 연구에서는 뇌영상기술(fMRI)을 이용하여 뇌신경활동성에 기반한 영재성 평가의 가능성을 타진하였다. 이를 위해 현행 영재교육 수혜자 및 일반 고교생 50명을 대상으로 국제적으로 공인된 다양한 지능검사(RAPM, WAIS)와 창의력 검사(TTCT-도형, TTCT-언어)를 실시하였으며 이들 중 40명의 학생을 대상으로 추론적 사고능력을 요구하는 지능과제 수행 시 두뇌활동성을 측정하였다. 일반지능(g) 수준에 따라 영재군과 일반군으로 구분하여 두뇌활동성을 비교 분석한 결과 두 그룹 모두 좌.우반구의 외측전전두엽피질(lateral PFC), 전대상피질(ACC), 후두정엽피질(PPC)에서 높은 활동성을 보였으며, 영재군이 일반군에 비해 높게 나타났다. 개인별 일반지능(g) 수준과 두뇌활동성 사이의 상관도를 분석한 결과 후두정엽피질에서 가장 높은 상관도$(r=0.73{\sim}0.74)$를 보였으며 다른 영역들 역시 비교적 높은 상관도$(r=0.53{\sim}0.66)$를 보였다. 한편 영재군은 일반군에 비해 지능지수에서는 월등히 높은 수치를 보였으나 창의력지수에서는 크게 차이를 보이지 않았다. 이러한 결과는 뇌기능영상기술이 영재성 평가에 적용될 수 있을 것이라는 가능성을 보여주며 영재선발 시 창의력에 대한 평가 비중을 강화시킬 필요성이 있음을 시사한다.

We applied functional magnetic resonance imaging (fMRI) techniques to examine whether general intelligence (g) could be assessed using a neurobiological signal of the brain. Participants were students in a national science academy and several local high schools. They were administered diverse intelligence (RAPM and WAIS) and creativity tests (TTCT-figural and TTCT-verbal). Forty of them were scanned using fMRI while performing complex and simple g tasks. In brain regions of greater blood flow in complex compared with simple g tasks, the gifted group with an exceptional g level was not significantly different from the average group with an ordinary g level: both of them activated the lateral prefrontal, anterior cingulate, posterior parietal cortices. However, the activation levels of the gifted group were greater than those of the average group, particularly in the posterior parietal cortex. Correlation analysis showed that the activity of the posterior parietal cortex has the highest correlation ($(r=0.73{\sim}0.74)$) with individual g levels and other regions also have moderate correlation ($(r=0.53{\sim}0.66)$). On the other hand, two-sample t test showed a striking contrast in intelligence tests scores between the gifted and the average group, whereas it did not show in creativity tests scores. These results suggest that it is within the bounds of possibility that a neurobiological signal of the brain is used in the assessment of the gifted and also suggest that creativity has to be given a great deal of weight on the assessment of the gifted.

키워드

참고문헌

  1. 교육인적자원부(2004). 창의적 인재 양성을 위한 수월성 교육종합대책
  2. 교육인적자원부, 16개 시.도 교육청, 한국교육개발원(2005). 영재교육 이렇게 하고 있습니다
  3. 영재교육진흥법(1999)
  4. 영재교육진흥법시행령(2002)
  5. Alderton, D. L., & Larson, G. E. (1990). Dimensionality of Raven's Advanced Progressive Matrices items. Educ. Psychol. Meas., 50, 887-900 https://doi.org/10.1177/0013164490504019
  6. Anastasi, A. (1988). Psychological testing. New York: Macmillan Publishing Company
  7. Beck, N. C., Horwitz, E., Seidenberg, M., Parker, J., & Frank, R. (1985). WAIS-R factor structure in psychiatric and general medical patients. Journal of Consulting and Clinical Psychology, 53, 402-405 https://doi.org/10.1037/0022-006X.53.3.402
  8. Bors, D. A., & Strokes, T. L. (1998). Raven's Advanced Progressive Matrices: Norms for first-year university students and the development of a short form. Educ. Psychol. Meas., 58, 382-399 https://doi.org/10.1177/0013164498058003002
  9. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1996). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49-62
  10. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci., 12, 1-47
  11. Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev., 97, 404-431 https://doi.org/10.1037/0033-295X.97.3.404
  12. Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin
  13. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604-608 https://doi.org/10.1038/386604a0
  14. Colom, R., Abad, F. J., García, L. F., & Juan-Espinosa, M. (2002). Education, Wechsler's full scale IQ, and g. Intelligence, 30, 449-462 https://doi.org/10.1016/S0160-2896(02)00122-8
  15. Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163-183 https://doi.org/10.1016/S0160-2896(01)00096-4
  16. Cooper, E. (1991). A critique of six measures for assessing creativity. Journal of Creative Behavior, 25, 194-204 https://doi.org/10.1002/j.2162-6057.1991.tb01370.x
  17. Cropley, A. J. (2000). Defining and measuring creativity: Are creativity tests worth using? Roeper Review, 23, 72-79 https://doi.org/10.1080/02783190009554069
  18. Esquivel, G. B., & Lopez, E. (1988). Correlations among measures of cognitive ability, creativity, and academic achievementfor gifted minority children. Perceptual and Motor Skills, 67, 395-398 https://doi.org/10.2466/pms.1988.67.2.395
  19. Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Hum. Brain Mapp., 2, 165-189
  20. Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. New York: Macmillan
  21. Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb. Cortex, 10, 829-839 https://doi.org/10.1093/cercor/10.9.829
  22. Ghatan, P. H., Hsieh, J. C., Wirsen-Meurling, A., Wredling, R., Eriksson, L., Stone-Elander, S., Levander, S., & Ingvar, M. (1995). Brain activation induced by the perceptual maze test: A PET study of cognitive performance. NeuroImage, 2, 112-124 https://doi.org/10.1006/nimg.1995.1014
  23. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nat. Neurosci., 6, 316-322 https://doi.org/10.1038/nn1014
  24. Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nat. Rev. Neurosci., 5, 471-482 https://doi.org/10.1038/nrn1405
  25. Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill
  26. Gustafsson, J. E. (1984). A unifying model for the structure of intellectual abilities. Intelligence, 8, 179-203 https://doi.org/10.1016/0160-2896(84)90008-4
  27. Gustafsson, J. E. (1988). Hierarchical models of individual differences in cognitive abilities. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 4, pp. 35-71). Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc
  28. Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J., Paek, J., Browning, H., & Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199-217 https://doi.org/10.1016/0160-2896(88)90016-5
  29. Haier, R. J., Nathan, S. W., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31, 429-441 https://doi.org/10.1016/S0160-2896(03)00025-4
  30. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkired, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23, 425-433 https://doi.org/10.1016/j.neuroimage.2004.04.025
  31. Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57, 253-270 https://doi.org/10.1037/h0023816
  32. Houde, O., & Tzourio-Mazoyer, N. (2003). Neural foundations of logical and mathematical cognition. Nat. Rev. Neurosci., 4, 507-514 https://doi.org/10.1038/nrn1117
  33. Jausovec, N., & Jausovec, K. (2000). Correlations between ERP parameters and intelligence: A reconsideration. Biol. Psychol. 55(2), 137-154 https://doi.org/10.1016/S0301-0511(00)00076-4
  34. Jensen, A. R. (1991). Spearman's g and the problem of educational equality. Oxford Rev. Educ., 17, 169-187 https://doi.org/10.1080/0305498910170205
  35. Johnson, W., Bouchard, T. J., Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g: Consistent results from three test batteries. Intelligence, 32, 95-107 https://doi.org/10.1016/S0160-2896(03)00062-X
  36. Jung, R. E., Yeo, R. A., Chiulli, S. J., Sibbitt, W. L. J., Weers, D. C., Hart, B. L., & Brooks, W. M. (1999). Biochemical markers of cognition: A proton MR spectroscopy study of normal human brain. NeuroReport, 10, 3327-3331 https://doi.org/10.1097/00001756-199911080-00014
  37. Kaufman, A. S., & Lichtenberger, E. O. (1999). The essentials of WAIS-III assessment. New York: J. Wiley & Sons
  38. Klingberg, T., O'Sullivan, B. T., & Roland, P. E. (1997). Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task. Cereb. Cortex, 7, 465-471 https://doi.org/10.1093/cercor/7.5.465
  39. Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: Aparametric study of relational complexity. Cereb. Cortex, 12. 477-485 https://doi.org/10.1093/cercor/12.5.477
  40. Leckliter, I. N., Matarazzo, J. D., & Silverstein, A. B. (1986). A literature review of factor analytic studies of the WAIS-R. Journal of Clinical Psychology, 42, 332-342 https://doi.org/10.1002/1097-4679(198603)42:2<332::AID-JCLP2270420220>3.0.CO;2-2
  41. Lynn, R., & Irwing, P. (2004). Sex differences on the progressive matrices: A meta-analysis. Intelligence, 32, 481-498 https://doi.org/10.1016/j.intell.2004.06.008
  42. Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of intelligence. Intelligence, 7, 107-127 https://doi.org/10.1016/0160-2896(83)90023-5
  43. Neisser, U., Boodoo, G., Bouchard, T. J. Jr., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J., & Urbina, S. (1996). Intelligence: Knowns and unknowns. Am. Psychol., 51, 77-101 https://doi.org/10.1037/0003-066X.51.2.77
  44. Newman, S. D., Carpenter, P. A., Varma, S., & Just, M. A. (2003). Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia, 41, 1668-1682 https://doi.org/10.1016/S0028-3932(03)00091-5
  45. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA, 87, 9868-9872 https://doi.org/10.1073/pnas.87.24.9868
  46. Parker, K. (1983). Factor analysis of the WAIS-R at nine age levels between 16 and 74 years. Journal of Consulting and Clinical Psychology, 51, 302-308 https://doi.org/10.1037/0022-006X.51.2.302
  47. Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychol., 33, 43-63 https://doi.org/10.1006/cogp.1997.0659
  48. Raven, J. C., Court, J. H., & Raven, J. (1988). Manual for Raven's Progressive Matrices and Vocabulary Scales. London: Lewis
  49. Renzulli, J. S. (1978). What makes giftedness? Re-examinating a definition. Phi Delta Kappan, 60, 180-184
  50. Schmidt, F. L., & Hunter, J. E. (1998). The Validity and Utility of Selection Methods in Personnel Psychology: Practical and Theoretical Implications of 85 Years of Research Findings. Psychol. Bull., 124, 262-274 https://doi.org/10.1037/0033-2909.124.2.262
  51. Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of working memory. Proc. Natl. Acad. Sci. USA, 95, 12061-12068
  52. Snow, R. E. (1989). Toward assessment of cognitive and conative structures in learning. Educational Researcher, 18, 8-14 https://doi.org/10.2307/1176713
  53. Stelzl, I., Merz, F., Ehlers, T., & Remer, H. (1995). The effect of schooling on the development of fluid and crystallized intelligence: A quasi-experimental study. Intelligence, 21, 279-296 https://doi.org/10.1016/0160-2896(95)90018-7
  54. Torrance, E. P. (1999a). Torrance Tests of Creative Thinking: Thinking Creatively with Pictures, Form A. Bensenville, IL: Scholastic Testing Service
  55. Torrance, E. P. (1999b). Torrance Tests of Creative Thinking: Thinking Creatively with Words, Form A. Bensenville, IL: Scholastic Testing Service
  56. Wallach, M. A., & Kogan, N. (1965). Modes of thinking in young children. New York: Holt, Rinehart and Winston
  57. Wechsler, D. (1981). WAIS-R manual; Wechsler Adult Intelligence Scale-Revised. New York: The Psychological Corporation
  58. Woodcock, R. W. (1990). Theoretical foundations of the WJ-R measures of cognitive ability. Journal of Psychoeducational Assessment, 8, 231-258 https://doi.org/10.1177/073428299000800303
  59. Yamamoto, K. (1964). Threshold of intelligence in academic achievement of highly creative students. The Journal of Experimental Education, 32, 401-405