DOI QR코드

DOI QR Code

Significant Improvement of Catalytic Efficiencies in Ionic Liquids

  • Song, Choong-Eui (Institute of Basic Science, Department of Chemistry, Sungkyunkwan University) ;
  • Yoon, Mi-Young (Institute of Basic Science, Department of Chemistry, Sungkyunkwan University) ;
  • Choi, Doo-Seong (Institute of Basic Science, Department of Chemistry, Sungkyunkwan University)
  • Published : 2005.09.20

Abstract

The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive “ionic liquid effect” on catalysis are discussed.

Keywords

References

  1. Song, C. E.; Lee, S.-g. Chem. Rev. 2002, 102, 3495-3524 https://doi.org/10.1021/cr0103625
  2. Song, C. E.; Park, I. S. In Advances in Organic Synthesis; Bentham Publishers: 2005; Chap. 8
  3. Song, C. E. In Annual Report C 2005, 1-28
  4. Cornils, B.; Herrmann, W. A. Aqueous-Phase Organometallic Catalysis; VCH: New York, 1998
  5. Horvath, I. T. Acc. Chem. Res. 1998, 31, 641-650 https://doi.org/10.1021/ar970342i
  6. Curran, D. P. Angew. Chem. Int. Ed. Engl. 1998, 37, 1174-1196 https://doi.org/10.1002/(SICI)1521-3773(19980518)37:9<1174::AID-ANIE1174>3.0.CO;2-P
  7. Curran, D. P. Synlett 2001, 1488-1496
  8. Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1999, 99, 475- 494 https://doi.org/10.1021/cr970037a
  9. Wang, X.; Ding, K. J. Am. Chem. Soc. 2004, 126, 10524 https://doi.org/10.1021/ja047372i
  10. Liang, Y.; Jing, Q.; Li, X.; Shi, L.; Ding, K. J. Am. Chem. Soc. 2005, 127, 7694-7695 https://doi.org/10.1021/ja050737u
  11. Dioumaev, V. D.; Bullock, M. Nature 2000, 424, 530 https://doi.org/10.1038/nature01856
  12. Yang, J. W.; Han, H.; Roh, E. J.; Lee, S.-g.; Song, C. E. Org. Lett. 2002, 4, 4685-4688 https://doi.org/10.1021/ol027109r
  13. Jo, C. H.; Han, S.-H.; Yang, J. W.; Roh, E. J.; Shin, U.-S.; Song, C. E. Chem. Commun. 2003, 1312-1313
  14. Song, C. E.; Jung, D.; Roh, E. J.; Lee, S.-g.; Chi, D. Y. Chem. Commun. 2002, 3038-3039
  15. Song, C. E. Chem. Commun. 2004, 1033-1043
  16. Song, C. E. In Methodologies in Asymmetric Catalysis; Malhotra, S. V., Ed.; ACS Symposium Series 880, 2004; pp 145-160
  17. Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A.-C.; Plaquevent, J.-C. Tetrahedron: Asymmetry 2003, 14, 3081- 3093 https://doi.org/10.1016/S0957-4166(03)00596-2
  18. Ionic Liquids in Synthesis; Wasserscheid, P.; Welton, T., Eds.; Wiley-VCH: Weinheim, 2003
  19. Ionic Liquids: Industrial Applications for Green Chemistry; Rogers, R. D.; Seddon, K. R., Eds; ACS Symposium Series 818, 2002
  20. Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667-3692 https://doi.org/10.1021/cr010338r
  21. Sheldon, R. Chem. Commun. 2001, 2399-2407
  22. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772-3789 https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  23. Welton, T. Chem. Rev. 1999, 99, 2071-2084 https://doi.org/10.1021/cr980032t
  24. Kobayashi, S. Chem. Rev. 2002, 102, 2227-2302 https://doi.org/10.1021/cr010289i
  25. Kobayashi, S. Chem. Commun. 2003, 449-460
  26. Song, C. E.; Shim, W. H.; Roh, E. J.; Choi, J. H. Chem. Commun. 2000, 1695-1696
  27. Song, C. E.; Jun, D.; Choung, S.-Y.; Roh, E. J.; Lee, S.-g. Angew. Chem. Int. Ed. 2004, 43, 6183-6185 https://doi.org/10.1002/anie.200460292
  28. Tsuchimoto, T.; Maeda, T.; Shirakawa, E.; Kawakami, Y. Chem. Commun. 2000, 1573-1574
  29. Song, C. E.; Shim, W. H.; Roh, E. J.; Lee, S.-g.; Choi, J.-H. Chem. Commun. 2001, 1122-1123
  30. Kobayashi, S.; Hachiya, I.; Araki, M.; Ishitani, H. Tetrahedron Lett. 1993, 34, 3755 https://doi.org/10.1016/S0040-4039(00)79220-3
  31. Kim, E. J.; Ko, S. Y.; Song, C. E. Helv. Chim. Acta 2003, 86, 894- 899 https://doi.org/10.1002/hlca.200390087
  32. Yadav, J. S.; Reddy, B. V. S.; Baishya, G.; Narsaiah, A. V. Chem. Lett. 2005, 34, 102-103 https://doi.org/10.1246/cl.2005.102
  33. Mi, X.; Luo, S.; Hea, J.; Chenga, J.-P. Tetrahedron Lett. 2004, 45, 4567-4570 https://doi.org/10.1016/j.tetlet.2004.04.039
  34. Ji, S. J.; Zhou, M. F.; Gu, D. G.; Wang, S. Y.; Loh, T. P. Synlett 2003, 13, 2077-2079
  35. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457 https://doi.org/10.1021/cr00039a007
  36. Stanforth, S. P. Tetrahedron 1998, 54, 263 and references therein https://doi.org/10.1016/S0040-4020(97)10233-2
  37. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249-1250
  38. Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513 https://doi.org/10.1080/00397918108063618
  39. Mizushima, E.; Hayashi, T.; Tanaka, M. Green Chem. 2001, 3, 76- 79 https://doi.org/10.1039/b100951f
  40. Silvana, S. M.; Suarez, P. A. Z.; de Souza, R. F.; Dupont, J. Polymer Bul. 1998, 40, 401-405 https://doi.org/10.1007/s002890050269
  41. Zimmermann, J.; Wassersceid, P.; Tkatchenko, I.; Stutzmann, S. Chem. Commun. 2002, 760-761
  42. Xu, L.; Chen, W.; Ross, J.; Xiao, J. Org. Lett. 2001, 3, 295-297 https://doi.org/10.1021/ol000362b
  43. Mo, J.; Xu, L.; Xiao, J. J. Am. Chem. Soc. 2005, 127, 751-760 https://doi.org/10.1021/ja0450861
  44. de Bellefon, C.; Pollet, E.; Grenouillet, P. J. Mol. Catal. A: Chemical 1999, 145, 121-126 https://doi.org/10.1016/S1381-1169(99)00032-1
  45. Kim, D. W.; Song, C. E.; Chi, D. Y. J. Am. Chem. Soc. 2002, 124, 10278-10279 https://doi.org/10.1021/ja026242b
  46. Kim, D. W.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2003, 68, 4281- 4285 https://doi.org/10.1021/jo034109b
  47. Kim, D. W.; Hong, D. J.; Seo, J. W.; Kim, H. S.; Kim, H. K.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2004, 69, 3186-3189 https://doi.org/10.1021/jo035563i
  48. Gerdes, J. M.; Keil, R. N.; Shulgin, A. T.; Mathis, C. A. J. Fluorine Chem. 1996, 78, 121-129 https://doi.org/10.1016/0022-1139(96)03417-3
  49. Sun, W.; Xia, C.-G.; Wang, H.-W. Tetrahedron Lett. 2003, 44, 2409-2411 https://doi.org/10.1016/S0040-4039(03)00185-0
  50. Ohara, H.; Kiyokaneb, H.; Itoha, T. Tetrahedron Lett. 2002, 43, 3041-3044 https://doi.org/10.1016/S0040-4039(02)00405-7
  51. Song, C. E.; Roh, E. J. Chem. Commun. 2000, 837-838
  52. Song, C. E. unpublished results
  53. Jessop, P. G.; Stanley, R. R.; Brown, R. A.; Eckert, C. A.; Liotta, C. L.; Ngo, T. T.; Pollet, P. Green Chem. 2003, 5, 123-128 https://doi.org/10.1039/b211894g
  54. Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley and Sons: New York, 1994
  55. Sun, Y.; Landau, R. N.; Wang, J.; LeBlond, C.; Blackmond, D. G. J. Am. Chem. Soc. 1996, 118, 1348-1353 https://doi.org/10.1021/ja952988g
  56. Doherty, S.; Goodrich, P.; Hardacre, C.; Luo, H.-K.; Rooney, D. W.; Seddon, K. R.; Styring, P. Green Chem. 2004, 6, 63-67 https://doi.org/10.1039/b312761c
  57. Meracz, I.; Oh, T. Tetrahedron Lett. 2003, 44, 6465-6468 https://doi.org/10.1016/S0040-4039(03)01590-9
  58. Toma, S.; Gotov, B.; Kmentova, I.; Solcaniova, E. Green Chem. 2000, 2, 149-151 https://doi.org/10.1039/b002124p
  59. Kmentova, I.; Gotov, B.; Solcaniova, E.; Toma, S. Green Chem. 2002, 4, 103-106 https://doi.org/10.1039/b109178f
  60. List, B. Tetrahedron 2002, 58, 5573-5570 https://doi.org/10.1016/S0040-4020(02)00516-1
  61. List, B. Synlett. 2001, 1675-1686
  62. Sakthiviel, K.; Notz, W.; Bui, T.; Barbas III, C. F. J. Am. Chem. Soc. 2001, 123, 5260-5267 https://doi.org/10.1021/ja010037z
  63. Loh, T.-P.; Feng, L.-C.; Yang, H.-Y.; Yang, J.-Y. Tetrahedron Lett. 2002, 43, 8741-8743 https://doi.org/10.1016/S0040-4039(02)02104-4
  64. Kotrusz, P.; Kmentova, I.; Gotov, B.; Toma, S.; Solcaniova, E. Chem. Commun. 2002, 2510-2511
  65. Fraile, J. M.; Garcia, J. I.; Herrerias, C. I.; Mayoral, J. A.; Carrie, D.; Vaultier, M. Tetrahedron: Asymmetry 2001, 12, 1891-1894 https://doi.org/10.1016/S0957-4166(01)00315-9
  66. Oh, C. R.; Choo, D. J.; Shim, W. H.; Lee, D. H.; Roh, E. J.; Lee, S.-g.; Song, C. E. Chem. Commun. 2003, 1100-1101
  67. Guernik, A.; Wolfson, A.; Herskowitz, M.; Greenspoon, N.; Geresh, S. Chem. Commun. 2001, 2314-2315
  68. Sheldon, R. A.; Lau, R. M.; Sorgedrager, M. J.; van Rantwijk, F.; Seddon, K. R. Green Chem. 2002, 4, 147-151 https://doi.org/10.1039/b110008b
  69. Howarth, J.; Hanlon, K.; Fayne, D.; McCormac, P. Tetrahedron Lett. 1997, 38, 3097-3100 https://doi.org/10.1016/S0040-4039(97)00554-6
  70. Pegot, B.; Vo-Thanh, G.; Gori, D.; Loupy, A. Tetrahedron Lett. 2004, 45, 6425-6428 https://doi.org/10.1016/j.tetlet.2004.06.134
  71. Ding, J.; Desikan, V.; Han, X.; Xiao, T. L.; Ding, R.; Jenks, W. S.; Armstrong, D. W. Org. Lett. 2005, 7, 335-337 https://doi.org/10.1021/ol047599i

Cited by

  1. C18:1 Methyl Ester Metathesis in [bmim][X] Type Ionic Liquids vol.10, pp.11, 2009, https://doi.org/10.3390/ijms10115020
  2. Direct Arylation of Pyrrole Derivatives in Ionic Liquids vol.2011, pp.15, 2011, https://doi.org/10.1002/ejoc.201100004
  3. Methanolysis of poly(lactic acid) using acidic functionalized ionic liquids as catalysts vol.131, pp.19, 2014, https://doi.org/10.1002/app.40817
  4. Synthesis, characterization and thermophysical properties of three neoteric solvents-ionic liquids based on choline chloride vol.30, pp.1, 2014, https://doi.org/10.1007/s40242-014-3346-1
  5. ] catalyzed facile synthesis of hydrazone derivatives vol.39, pp.1, 2015, https://doi.org/10.1039/C4NJ01666A
  6. Asymmetric Catalytic Hydroamination of Activated Olefins in Ionic Liquids vol.90, pp.2, 2007, https://doi.org/10.1002/hlca.200790048
  7. Metal Triflate-Catalyzed Regio- and Stereoselective Friedel–Crafts Alkenylation of Arenes with Alkynes in an Ionic Liquid: Scope and Mechanism vol.349, pp.10, 2007, https://doi.org/10.1002/adsc.200700039
  8. Activation of Lewis acid catalysts in the presence of an organic salt containing a non-coordinating anion: its origin and application potential pp.44, 2007, https://doi.org/10.1039/b712060e
  9. Hydrogenation of Quinolines Using a Recyclable Phosphine-Free Chiral Cationic Ruthenium Catalyst: Enhancement of Catalyst Stability and Selectivity in an Ionic Liquid vol.120, pp.44, 2008, https://doi.org/10.1002/ange.200802237
  10. Hydrogenation of Quinolines Using a Recyclable Phosphine-Free Chiral Cationic Ruthenium Catalyst: Enhancement of Catalyst Stability and Selectivity in an Ionic Liquid vol.47, pp.44, 2008, https://doi.org/10.1002/anie.200802237
  11. A dream combination for catalysis: highly reactive and recyclable scandium(iii) triflate-catalyzed cyanosilylations of carbonyl compounds in an ionic liquid vol.11, pp.7, 2009, https://doi.org/10.1039/b900254e
  12. -Protected 1,2-Amino Alcohols and the Corresponding Epoxides in High Optical Purity vol.2009, pp.17, 2009, https://doi.org/10.1002/ejoc.200900032
  13. Ionic Liquids-Based Catalysis with Solids: State of the Art vol.351, pp.6, 2009, https://doi.org/10.1002/adsc.200900043
  14. Ionic Liquids: An Environmentally Friendly Media for Nucleophilic Substitution Reactions vol.27, pp.3, 2005, https://doi.org/10.5012/bkcs.2006.27.3.345
  15. Asymmetric Electrophilic Fluorination of β-Keto Phosphonates in Ionic Liquid Media Catalyzed by Chiral Palladium Complexes vol.27, pp.3, 2006, https://doi.org/10.5012/bkcs.2006.27.3.423
  16. Synthesis and Properties of Ionic Liquids:Imidazolium Tetrafluoroborates with Unsaturated Side Chains vol.27, pp.6, 2005, https://doi.org/10.5012/bkcs.2006.27.6.847
  17. Significant Improvement of Catalytic Efficiencies in Ionic Liquids vol.37, pp.3, 2005, https://doi.org/10.1002/chin.200603254
  18. Synthesis and Physicochemical Properties of Ionic Liquids: 1-Alkenyl-2,3-dimethylimidazolium Tetrafluoroborates vol.28, pp.9, 2005, https://doi.org/10.5012/bkcs.2007.28.9.1562
  19. Synthesis and Properties of Pyrrolidinium and Piperidinium Bis(trifluoromethanesulfonyl)imide Ionic Liquids with Allyl Substituents vol.28, pp.9, 2005, https://doi.org/10.5012/bkcs.2007.28.9.1567
  20. Palladium within ionic liquid functionalized mesoporous silica SBA-15 and its catalytic application in room-temperature Suzuki coupling reaction vol.295, pp.1, 2008, https://doi.org/10.1016/j.molcata.2008.08.016