DOI QR코드

DOI QR Code

Comparable Electron Capture Efficiencies for Various Protonated Sites on the 3rd Generation Poly(Propylene Imine) Dendrimer Ions: Applications by SORI-CAD and Electron Capture Dissociation Mass Spectrometry (ECD MS)

  • Han, Sang-Yun (Division of Chemical Metrology and Material Evaluation, Korea Research Institute of Standards and Science) ;
  • Lee, Sun-Young (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Oh, Han-Bin (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2005.05.20

Abstract

In this article, we report the tandem mass spectrometry investigations for the electron capture efficiencies of the protons belonging to the different locations (generations) in a poly(propylene imine) dendrimer with three layers of a repeat unit (named as the third generation dendrimer). The employed tandem mass spectrometry methods include SORI-CAD (sustained off-resonance irradiation collisional activation dissociation) and ECD(electron capture dissociation) mass spectrometry. We obtained SORI-CAD spectra for the dendrimer ions in the different charge states, ranging from 2+ to 4+. The analysis of fragmentation sites provides the information as to where the protons are distributed among various generations of the dendrimer. Based upon this, a new strategy to study the electron capture efficiencies of the protons is utilized to examine a new type of triplycharged ions by SORI-CAD, i.e., the 3+ ions generated from the charge reduction of the native 4+ ions by ECD: (M+4H)$^{4+}\;+\;e^-\;{\rightarrow}$ (M+4H)$^{3+\bullet}$ ${\rightarrow}\;({H^{\bullet}}_{ejected}$) + (M+3H)$^{3+}\;\rightarrow$ CAD. Interestingly, comparison of these four SORICAD spectra indicates that the proton distribution in the charge-reduced 3+ ions is very close to that in the native 4+ ions. It further suggests that in this synthetic polymer ($\sim$1.7 kDa) with an artificial architecture, the electron capture efficiencies of the protons are actually insensitive to where they are located in the molecule. This is somewhat contradictory to common expectations that the protons in the inner generations may not be well exposed to the incoming electron irradiation as much as the outer ones are, thus may be less efficient for electron capture. This finding may carry some implications for the case of medium sized peptide ions with similar masses, which are known to show no obvious site-specific fragmentations in ECD MS.

Keywords

References

  1. Boas, U.; Heegaard, P. M. H. Chem. Soc. Rev. 2004, 33, 43 https://doi.org/10.1039/b309043b
  2. Scott, R. W. J.; Wilson, O. M.; Oh, S.-K.; Kenik, E. A.; Crooks, R. M. J. Am. Chem. Soc. 2004, 126, 15583 https://doi.org/10.1021/ja0475860
  3. Suk, J.; Lee, J.; Kwak, J. Bull. Korean Chem. Soc. 2004, 25, 1681 https://doi.org/10.5012/bkcs.2004.25.11.1681
  4. Neubert, H.; Knights, K. A.; de Miguel, Y. R.; Cowan, D. A. Macromolecules 2003, 36, 8297 https://doi.org/10.1021/ma034728m
  5. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64 https://doi.org/10.1126/science.2675315
  6. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151 https://doi.org/10.1002/rcm.1290020802
  7. Tang, X.-J.; Thibault, P.; Boyd, R. K. Anal. Chem. 1993, 65, 2824 https://doi.org/10.1021/ac00068a020
  8. Jones, J. L.; Dongre, A. R.; Somogyi, A.; Wysocki, V. H. J. Am. Chem. Soc. 1996, 116, 8368 https://doi.org/10.1021/ja00097a055
  9. McLuckey, S. A.; Asano, K. G.; Schaaff, G.; Stephenson J. L. Jr. Int. J. Mass Spectrom. 2000, 195/196, 419 https://doi.org/10.1016/S1387-3806(99)00201-8
  10. Koster, S.; Duursma, M. C.; Boon, J. J.; Heeren, M. A.; Ingemann, S.; van Benthem, R. A. T. M.; de Koster, C. G. J. Am. Soc. Mass Spectrom. 2003, 14, 332 https://doi.org/10.1016/S1044-0305(03)00004-7
  11. Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Anal. Chem. 2000, 72, 563 https://doi.org/10.1021/ac990811p
  12. Oh, H. B.; Brueker, K.; Sze, S. K.; Ge, Y.; Carpenter, B. K.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 2002, 99, 15863 https://doi.org/10.1073/pnas.212643599
  13. Breuker, K.; Oh, H. B.; Lin, C.; Carpenter, B. K.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 2004, 101, 13971 https://doi.org/10.1073/pnas.0406385101
  14. Yu, S.; Lee, S.; Chung, G.; Oh, H. B. Bull. Korean Chem. Soc. 2004, 25, 1477 https://doi.org/10.1007/s11814-008-0243-7
  15. Lee, S.; Han, S. Y.; Lee, T. G.; Lee, D.; Chung, G.; Oh, H. B. submitted to J. Am. Soc. Mass Spectrom. (2005)
  16. Marshall, A. G.; Wang, T. C. L.; Ricca, T. L. J. Am. Chem. Soc. 1985, 107, 7893 https://doi.org/10.1021/ja00312a015
  17. Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Anal. Chim. Acta 1991, 246, 211 https://doi.org/10.1016/S0003-2670(00)80678-9
  18. NIST Chemistry Webbook: http://webbook.nist.gov/chemistry/
  19. Breuker, K.; Oh, H. B.; Cerda, B. A.; Horn, D. M.; McLafferty, F. W. Eur. J. Mass Spectrom. 2002, 8, 277
  20. Haknsson, K.; Chalmers, M. J.; Quinn, J. P.; McFarland, M. A.; Hendrickson, C. L.; Marshall, A. G. Anal. Chem. 2003, 75, 3256 https://doi.org/10.1021/ac030015q

Cited by

  1. Observation of pronounced b •,y cleavages in the electron capture dissociation mass spectrometry of polyamidoamine (PAMAM) dendrimer ions with amide functionalities vol.17, pp.4, 2006, https://doi.org/10.1016/j.jasms.2005.12.004
  2. MALDI-TOF Analysis of Polyhexamethylene Guanidine (PHMG) Oligomers Used as a Commercial Antibacterial Humidifier Disinfectant vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1708
  3. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type product ions vol.20, pp.21, 2006, https://doi.org/10.1002/rcm.2708
  4. Current literature in mass spectrometry vol.41, pp.8, 2006, https://doi.org/10.1002/jms.955
  5. A Variety of Activation Methods Employed in “Activated-Ion” Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions vol.27, pp.3, 2006, https://doi.org/10.5012/bkcs.2006.27.3.389
  6. Identification of Phospholipid Molecular Species in Porcine Brain Extracts Using High Mass Accuracy of 4.7 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry vol.27, pp.5, 2005, https://doi.org/10.5012/bkcs.2006.27.5.793
  7. Neutral Loss of Phosphopeptides upon Electron Capture Dissociation with a Hot Dispenser Cathode vol.28, pp.7, 2007, https://doi.org/10.5012/bkcs.2007.28.7.1195
  8. Electron Caption Dissociation of Proteins Initiated by Photoelectrons Generated from 266 nm UV Laser Radiation on an ICR Cell Wall vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1673
  9. Tandem Fourier transform mass spectrometry of block and random copolymers vol.301, pp.1, 2005, https://doi.org/10.1016/j.ijms.2010.08.028