DOI QR코드

DOI QR Code

Fractional Diffusion Equation Approach to the Anomalous Diffusion on Fractal Lattices

  • Huh, Dann (Department of Chemistry, Seoul National University) ;
  • Lee, Jin-Uk (Department of Chemistry, Seoul National University) ;
  • Lee, Sang-Youb (Department of Chemistry, Seoul National University)
  • Published : 2005.11.20

Abstract

A generalized fractional diffusion equation (FDE) is presented, which describes the time-evolution of the spatial distribution of a particle performing continuous time random walk (CTRW) on a fractal lattice. For a case corresponding to the CTRW with waiting time distribution that behaves as $\psi(t) \sim (t) ^{-(\alpha+1)}$, the FDE is solved to give analytic expressions for the Green’s function and the mean squared displacement (MSD). In agreement with the previous work of Blumen et al. [Phys. Rev. Lett. 1984, 53, 1301], the time-dependence of MSD is found to be given as < $r^2(t)$ > ~ $t ^{2\alpha/dw}$, where $d_w$ is the walk dimension of the given fractal. A Monte-Carlo simulation is also performed to evaluate the range of applicability of the proposed FDE.

Keywords

References

  1. Blumen, A.; Klafter, J.; Zumofen, G. In Optical Spectroscopy of Glasses, Zschokke, I., Ed.; Reidel: Dordrecht, 1986; p 199
  2. Scher, H.; Montroll, E. W. Phys. Rev. B 1975, 12, 2455 https://doi.org/10.1103/PhysRevB.12.2455
  3. Wong, I. Y.; Gardel, M. L.; Reichman, D. R.; Weeks, E. R.; Valentine, M. T.; Bausch, A. R.; Weitz, D. A. Phys. Rev. Lett. 2004, 92, 178101 https://doi.org/10.1103/PhysRevLett.92.178101
  4. Ratto, T. V.; Longo, M. L. Langmuir 2003, 19, 1788 https://doi.org/10.1021/la0261803
  5. Even, U.; Rademann, K.; Jortner, J. Phys. Rev. Lett. 1984, 52, 2164 https://doi.org/10.1103/PhysRevLett.52.2164
  6. Montroll, E. W.; Weiss, G. H. J. Math. Phys. 1965, 6, 167 https://doi.org/10.1063/1.1704269
  7. Metzler, R.; Klafter, J. Phys. Rep. 2000, 339, 1 https://doi.org/10.1016/S0370-1573(00)00070-3
  8. Balakrishnan, V. Physica A 1985, 132, 569 https://doi.org/10.1016/0378-4371(85)90028-7
  9. Barkai, E.; Metzler, R.; Klafter, J. Phys. Rev. E 2000, 61, 132 https://doi.org/10.1103/PhysRevE.61.132
  10. Schneider, W. R.; Wyss, W. J. Math. Phys. 1989, 30, 134 https://doi.org/10.1063/1.528578
  11. Havlin, S.; ben-Avraham, D. Adv. Phys. 1987, 36, 695 https://doi.org/10.1080/00018738700101072
  12. ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, 2000
  13. The Fractal Approach to Heterogeneous Chemistry; Avnir, D., Ed.; Wiley: New York, 1989
  14. Blumen, A.; Klafter, J.; White, B. S.; Zumofen, G. Phys. Rev. Lett. 1984, 53, 1301 https://doi.org/10.1103/PhysRevLett.53.1301
  15. O'Shaughnessy, B.; Procaccia, I. Phys. Rev. Lett. 1985, 54, 455; https://doi.org/10.1103/PhysRevLett.54.455
  16. Phys. Rev. A 1985, 32, 3073 https://doi.org/10.1103/PhysRevA.32.3073
  17. Metzler, R.; Glockle, W. G.; Nonnenmacher, T. F. Physica A 1994, 211, 13 https://doi.org/10.1016/0378-4371(94)90064-7
  18. Metzler, R.; Nonnenmacher, T. F. J. Phys. A: Math. Gen. 1997, 30, 1089 https://doi.org/10.1088/0305-4470/30/4/011
  19. Campos, D.; Mendez, V.; Fort, J. Phys. Rev. E 2004, 69, 031115 https://doi.org/10.1103/PhysRevE.69.031115
  20. Klafter, J.; Zumofen, G.; Blumen, A. J. Phys. A: Math. Gen. 1991, 24, 4835 https://doi.org/10.1088/0305-4470/24/20/016
  21. Jakobs, A.; Kehr, K. W. Phys. Rev. B 1993, 48, 8780 https://doi.org/10.1103/PhysRevB.48.8780
  22. Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions; Dover: New York, 1972
  23. Seki, K.; Wojcik, M.; Tachiya, M. J. Chem. Phys. 2003, 119, 7525 https://doi.org/10.1063/1.1605946
  24. Press, W. H.; Flannery, B. P.; Teukolsky, A. A.; Vetterling, W. T. Numerical Recipes; Cambridge University Press: Cambridge, 1986
  25. Srivastava, H. M.; Gupta, K. C.; Goyal, S. P. The H-Functions of One and Two Variables with Applications; South Asian Publishers: New Delhi, 1982

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450