DOI QR코드

DOI QR Code

Growth of Nano- and Microstructured Indium Nitride Crystals by the Reaction of Indium Oxide with Ammonia

  • Jung, Woo-Sik (School of Chemical Engineering and Technology, College of Engineering, Yeungnam University) ;
  • Ra, Choon-Sup (Department of Chemistry and Institute of Natural Science, Yeungnam University) ;
  • Min, Bong-Ki (Instrumental Analysis Center, Yeungnam University)
  • Published : 2005.09.20

Abstract

Nano- and microstructured indium nitride crystals were synthesized by the reaction of indium oxide ($In_2O_3$) powder and its pellet with ammonia in the temperature range 580-700 ${^{\circ}C}$. The degree of nitridation of $In_2O_3$ to InN was very sensitive to the nitridation temperature. The formation of zero- to three-dimensional structured InN crystals demonstrated that $In_2O_3$ is nitridated to InN via two dominant parallel routes (solid ($In_2O_3$)-to-solid (InN) and gas ($In_2O$)-to-solid (InN)). The growth of InN crystals with such various morphologies was explained by the vapor-solid (VS) mechanism where the degree of supersaturation of In vapor determines the growth morphology and the vapor was mainly by the reaction of $In_2O$ with ammonia and partially by sublimation of solid InN. The pellet method was proven to be useful to obtain homogeneous InN nanowires.

Keywords

References

  1. Strite, S.; Morkoç, H. J. Vac. Sci. Technol. 1992, B10, 1237
  2. Krukowski, S.; Witek, A.; Adamczyk, J.; Jun, J.; Bockowski, M.; Grzegory, I.; Lucznik, B.; Nowak, G.; Wrobleski, M.; Presz, A.; Gierlotka, S.; Stelmach, S.; Palosz, B.; Porowski, S.; Zinn, P. J. Phys. Chem. Solids 1998, 59, 289 https://doi.org/10.1016/S0022-3697(97)00222-9
  3. Bhuiyan, A. B.; Hashimoto, A.; Yamamoto, A. J. Appl. Phys. 2003, 94, 2779 https://doi.org/10.1063/1.1595135
  4. Bai, Y.-J.; Liu, Z.-G.; Xu, X.-G.; Cui, D.-L.; Hao, X.-P.; Feng, X.; Wang, Q.-L. J. Crystal Growth 2002, 241, 189 https://doi.org/10.1016/S0022-0248(02)01292-7
  5. Gao, L.; Zhang, Q.; Li, J. J. Mater. Chem. 2003, 13, 154 https://doi.org/10.1039/b208105a
  6. Xiao, J.; Xie, Y.; Luo, W. Inorg. Chem. 2003, 42, 107 https://doi.org/10.1021/ic0258330
  7. Dingman, S. D.; Rath, N. P.; Markowitz, P. D.; Gibbons, P. C.; Buhro, W. E. Angew. Chem. Int. Ed. 2000, 39, 1470 https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1470::AID-ANIE1470>3.0.CO;2-L
  8. Zhang, J.; Zhang, L.; Peng, X.; Wang, X. J. Mater. Chem. 2002, 12, 802 https://doi.org/10.1039/b111270h
  9. Parala, H.; Devi, A.; Hipler, F.; Maile, E.; Birkner, A.; Becker, H. W.; Fisher, R. A. J. Crystal Growth 2001, 231, 68 https://doi.org/10.1016/S0022-0248(01)01463-4
  10. Schwenzer, B.; Loeffler, L.; Seshadri, R.; Keller, S.; Lange, F. F.; DenBaars, S. P.; Mishra, U. K. J. Mater. Chem. 2004, 14, 637 https://doi.org/10.1039/b309576b
  11. Tang, T.; Han, S.; Jin, W.; Liu, X.; Li, C.; Zhang, D.; Zhou, C.; Chen, B.; Han, J.; Meyyapan, M. J. Mater. Res. 2004, 19, 423 https://doi.org/10.1557/jmr.2004.19.2.423
  12. Yin, L.-W.; Bando, Y.; Golberg, D.; Li, M.-S. Adv. Mater. 2004, 16, 1833 https://doi.org/10.1002/adma.200306684
  13. Liang, C. H.; Chen, L. C.; Hwang, J. S.; Chen, K. H.; Hung, Y. T.; Chen, Y. F. Appl. Phys. Lett. 2002, 81, 22 https://doi.org/10.1063/1.1490636
  14. Lan, Z. H.; Wang, W. M.; Sun, C. L.; Shi, S. C.; Hsu, C. W.; Chen, T. T.; Chen, K. H.; Chen, C. C.; Chen, Y. F.; Chen, L. C. J. Crystal Growth 2004, 269, 87 https://doi.org/10.1016/j.jcrysgro.2004.05.037
  15. Hinchcliffe, A. J.; Ogden, J. S. J. Phys. Chem. 1973, 77, 1973
  16. Campbell, W. B. Whisker Technology; Wiley-Interscience: New York, 1970; Chap. 2
  17. Kato, A.; Tamari, N. J. Crystal Growth 1979, 49, 199
  18. Jung, W.-S. Bull. Korean Chem. Soc. 2004, 25, 51 https://doi.org/10.5012/bkcs.2004.25.1.051

Cited by

  1. Growth of InN quantum dots to nanorods: a competition between nucleation and growth rates vol.17, pp.16, 2015, https://doi.org/10.1039/C5CE00053J
  2. UV-assisted synthesis of indium nitride nano and microstructures vol.3, pp.11, 2015, https://doi.org/10.1039/C4TA06848C
  3. Formation of composite structure based on boron and indium components under concentrated light in flow of nitrogen pp.1743-6761, 2019, https://doi.org/10.1080/17436753.2019.1574284
  4. Growth of Nano- and Microstructured Indium Nitride Crystals by the Reaction of Indium Oxide with Ammonia. vol.36, pp.52, 2005, https://doi.org/10.1002/chin.200552015
  5. Self-Assembled Growth of InN Microcages and Nanowires by Ammonolysis of an Amorphous Precursor and Their Optical Properties vol.113, pp.25, 2009, https://doi.org/10.1021/jp901748p
  6. Reaction mechanism for the ammonolysis of β-gallium oxide to gallium nitride vol.121, pp.1413, 2005, https://doi.org/10.2109/jcersj2.121.460
  7. Microstructural observation of β-gallium oxide nanostructures after ammonolysis vol.123, pp.1440, 2005, https://doi.org/10.2109/jcersj2.123.662
  8. Density Gradient Strategy for Preparation of Broken In2O3 Microtubes with Remarkably Selective Detection of Triethylamine Vapor vol.10, pp.32, 2005, https://doi.org/10.1021/acsami.8b09375
  9. Synthesis and morphology evolution of indium nitride (InN) nanotubes and nanobelts by chemical vapor deposition vol.21, pp.35, 2005, https://doi.org/10.1039/c9ce00975b
  10. A molten salt-based nitridation approach for synthesizing nanostructured InN electrode materials vol.10, pp.61, 2005, https://doi.org/10.1039/d0ra07172b