DOI QR코드

DOI QR Code

Recent Progress in Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Kim, Hwan-Kyu (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Oh, Jae-Buem (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Baek, Nam-Seob (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Roh, Soo-Gyun (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Nah, Min-Kook (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Kim, Yong-Hee (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University)
  • Published : 2005.02.20

Abstract

We have designed and developed novel luminescent lanthanide complexes for advanced photonics applications. Lanthanide(III) ions (Ln$^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins and naphthalenes. The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to Ln$^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of Ln$^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent Ln$^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent Ln$^{3+}$ complexes, yielding novel Ln(III)-cored dendrimer complex. The novel Ln(III)-cored dendrimer complex has much higher PL intensity than the corresponding simple complex, due to the efficient site-isolation effect. In this article, we will deal with recent progress in the synthesis and photophysical studies of inert and stable luminescent Ln$^{3+}$ complexes for advanced photonics applications. Also, our review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to Ln$^{3+}$ ions with Ln(III)-chelated prototype complexes.

Keywords

References

  1. Kim, H. K.; Roh, S. G.; Hong, K.-S.; Ka, J.-W.; Baek, N. S.; Oh, J. B.; Nah, M. K.; Cha, Y. H.; Ko, J. Macromol. Res. 2003, 11(3), 133 and see references cited therein https://doi.org/10.1007/BF03218343
  2. Roh, S.-G.; Baek, N. S.; Ka, J.-W.; Joo, D. L.; Lee, J. C.; Nah, M. K.; Ma, S. M.; Oh, J. B.; Paik, K. L.; Cha,Y. H.; Jo, J. H.; Kim, H. K. Polymer Sci. & Technol.(SPK) 2002, 13(6), 783
  3. Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Peters, G. A.; van Beelen, E. S. E.; Hofstraat, J. W.; Guerts, F. A. J.; Reinhoudt, D. N. Chem. Eur. J. 1998, 4, 772 https://doi.org/10.1002/(SICI)1521-3765(19980515)4:5<772::AID-CHEM772>3.0.CO;2-3
  4. Slooff, L. H.; Polman, A.; Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. J. Appl. Phys. 1998, 83, 497 https://doi.org/10.1063/1.366721
  5. Klink, S. I.; Hebbink, G. A.; Grave, L.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Slooff, L. H. J. Appl. Phys. 1999, 86, 1181 https://doi.org/10.1063/1.370867
  6. Klink, S. I.; Grave, L.; Reinhoudt, D. N.; van Veggel, F. C. J. M.; Werts, M. H. V.; Guerts, F. A. J.; Hofstraat, J. W. J. Phys. Chem. A 2000, 104, 5457 https://doi.org/10.1021/jp994286+
  7. Slooff, L. H.; Polman, A.; Klink, S. I.; Hebbink, G. A.; Grave, L.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. Opt. Mater. 2000, 14, 101 https://doi.org/10.1016/S0925-3467(99)00119-6
  8. Slooff, L. H.; Polman, A.; Cacialli, F.; Friend, R. H.; Hebbink, G. A.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Appl. Phys. Lett. 2001, 78, 2122 https://doi.org/10.1063/1.1359782
  9. Werts, M. H. V.; Hofstraat, J. W.; Geurts, F. A. J.; Verhoeven, J. W. Chem. Phys. Lett. 1997, 276, 196 https://doi.org/10.1016/S0009-2614(97)00800-2
  10. Gillin, W. P.; Curry, R. J. Appl. Phys. Lett. 1999, 74, 798 https://doi.org/10.1063/1.123371
  11. Curry, R. J.; Gillin, W. P. Appl. Phys. Lett. 1999, 75, 1380 https://doi.org/10.1063/1.124700
  12. Curry, R. J.; Gillin, W. P. Syn. Met. 2000, 111, 35 https://doi.org/10.1016/S0379-6779(99)00433-6
  13. Kawamura, Y.; Wada, Y.; Hasegawa, Y.; Iwamuro, M.; Kitamura, T.; Yanagita, S. Appl. Phys. Lett. 1999, 74, 3245 https://doi.org/10.1063/1.123357
  14. Kawamura, Y.; Wada, Y.; Iwamuro, M.; Kitamura, T.; Yanagita, S. Chem. Lett. 2000, 29(3), 280
  15. Hasegawa, Y.; Ohkubo, T.; Sogabe, K.; Kawamura, Y.; Wada, Y.; Nakashima, N.; Yanagita, S. Angew. Chem. Int. Ed. Engl. 2000, 39, 357 https://doi.org/10.1002/(SICI)1521-3773(20000117)39:2<357::AID-ANIE357>3.0.CO;2-M
  16. Harrison, B. S.; Foley, T. J.; Bouguettaya, M.; Boncella, J. M.; Reynolds, J. R.; Schanze, K. S. S.; Shim, J.; Holloway, P. H.; Padmanaban, G.; Ramakrishnan, S. Appl. Phys. Lett. 2001, 79, 3770 https://doi.org/10.1063/1.1421413
  17. Kang, T.-S.; Harrison, B. S.; Foley, T. J.; Knefely, A. S.; Boncella, J. M.; Reynolds, J. R.; Schanze, K. S. Adv. Mater. 2003, 15, 1093 https://doi.org/10.1002/adma.200304692
  18. Harrison, B. S.; Foley, T. J.; Knefely, A. S.; Cunningham, G. B.; Kang, T.-S.; Bouguettaya, M.; Boncella, J. M.; Reynolds, J. R.; Schanze, K. S. Chem. Mater. 2004, 16, 2938 https://doi.org/10.1021/cm049937f
  19. Destri, S.; Porzio, W.; Meinardi, F.; Tubino, R.; Salerno, G. Macromolecules 2003, 36, 273 https://doi.org/10.1021/ma025590v
  20. Kawa, M.; Frechet, J. M. J. Chem. Mater. 1998, 10, 286 https://doi.org/10.1021/cm970441q
  21. Paik, K. L.; Kim, H. K. Mol. Cryst. Liq. Cryst. 2001, 370, 185 https://doi.org/10.1080/10587250108030067
  22. Baek, N. S.; Nah, M. K.; Kim, Y. H.; Roh, S.-G.; Kim, H. K. Bull. Korean Chem. Soc. 2004, 25, 443 https://doi.org/10.1007/s11814-008-0075-5
  23. Roh, S.-G.; Baek, N. S.; Hong, K.-S.; Kim, H. K. Bull. Korean Chem. Soc. 2004, 25, 343 https://doi.org/10.5012/bkcs.2004.25.3.343
  24. Roh, S.-G.; Oh, J. B.; Nah, M. K.; Baek, N. S.; Lee, Y.; Kim, H. K. Bull. Korean Chem. Soc. 2004, 25, 1503 https://doi.org/10.5012/bkcs.2004.25.10.1503
  25. Roh, S.-G.; Nah, M. K.; Oh, J. B.; Baek, N. S.; Kim, H. K. Polyhedron 2005, 24, 137 https://doi.org/10.1016/j.poly.2004.10.014
  26. Desurvire, E. Erbium-doped Fiber Amplifiers: Principles and Applications; John Wiley & Sons, Inc.: New York, 1994
  27. Macfarlane, R. M.; Shelby, R. M. Spectroscopy of Solids Containing Rare Earth Ions; Kaplyanskii, A. A., Macfarlane, R. M., Eds.; North-Holland: Amsterdam, 1987; pp 51-184
  28. Judd, B. R. Phys. Rev. 1962, 127, 750 https://doi.org/10.1103/PhysRev.127.750
  29. Ofelt, G. S. J. Chem. Phys. 1962, 37, 511 https://doi.org/10.1063/1.1701366
  30. Wybourne, B. G. Spectroscopic Properties of Rare Earths; Interscience: New York, 1965
  31. Axe, Jr., J. D. J. Chem. Phys. 1963, 39, 1154 https://doi.org/10.1063/1.1734405
  32. Barasch, G. E.; Dieke, G. H. J. Chem. Phys. 1965, 43, 988 https://doi.org/10.1063/1.1696882
  33. Riseberg, L. A.; Moos, H. W. Phys. Rev. Lett. 1967, 19, 1423 https://doi.org/10.1103/PhysRevLett.19.1423
  34. Riseberg, L. A.; Moos, H. W. Phys. Rev. 1968, 174, 429 https://doi.org/10.1103/PhysRev.174.429
  35. Dieke, G. H.; Crosswhite, H. M. Appl. Opt. 1963, 2, 681
  36. Carnall, W. T.; Crosswhite, H.; Crosswhite, H. M. Argonne National Laboratory Report; No. ANL-78-XX-95, 1977
  37. Oh, J. B.; Baik, K. L.; Ka, J. W.; Roh, S. G.; Nah, M. K.; Kim, H. K. MRS Symp. Proc. Ser. 2003, 771, 195
  38. Oh, J. B.; Kim, Y. H.; Nah, M. K.; Kim, H. K. J. Luminescence (Special issue on dendrimers) 2005, in press
  39. Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Snellink-Ruel, B. H. M.; Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D. N. J. Am. Chem. Soc. 1997, 119, 138 https://doi.org/10.1021/ja9609314
  40. Kleinerman, M. J. Chem. Phys. 1969, 51, 2370 https://doi.org/10.1063/1.1672355
  41. Sabbatini, N.; Guardigli, M.; Manet, I. Adv. Photochem. 1997, 43, 549
  42. Rudzinski, C. M.; Engebretson, D. S.; Hartmann, W. K.; Nocera, D. G. J. Phys. Chem. A 1998, 102, 7442 https://doi.org/10.1021/jp9807569
  43. Hebbink, G. A.; Klink, S. I.; Grave, L.; Alink, P. G. B. O.; van Veggel, F. C. J. M. ChemPhysChem. 2002, 3, 1014 https://doi.org/10.1002/cphc.200290002
  44. Thorne, J. R. G.; Rey, J. M.; Denning, R. G.; Watkins, S. E.; Etchells, M.; Green, M.; Christou, V. J. Phys. Chem. A 2002, 106(16), 4014 https://doi.org/10.1021/jp013955s
  45. Vicinelli, V.; Ceroni, P.; Maestri, M.; Balzani, V.; Gorka, M.; Vogtle, F. J. Am. Chem. Soc. 2002, 124(22), 6461 https://doi.org/10.1021/ja017672p
  46. You, B.; Kim, H. J.; Park, N. G.; Kim, Y. S. Bull. Korean Chem. Soc. 2001, 22, 1005
  47. Yang, C.; Fu, L. M.; Wang, Y.; Zhang, J. P.; Wong, W. T.; Ai, X. C.; Qiao, J. P.; Zou, B. S.; Gui, L. L. Angew. Chem. Int. Ed. 2004, 43, 5010 https://doi.org/10.1002/anie.200454141
  48. McDermott, G.; Prince, S. M.; Freer, A. A.; Hawethornthwaite- Lawless, A. M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature 1995, 374, 517 https://doi.org/10.1038/374517a0
  49. Kim, H. K.; Roh, S. G.; Ka, J. W.; Kim, Y. H.; Nah, M. K.; Oh, J. B.; Baek, N. S. Korean Patent and International PCT Patent registered (October 28, 2004; PCT Publication No. WO 2004/ 092105 A1)
  50. Ka, J.-W.; Kim, H. K. Tetrahedron Letters 2004, 45, 4519 https://doi.org/10.1016/j.tetlet.2004.04.051
  51. Lindsey, J. S.; Prathapan, S.; Johnson, T. E.; Wagner, R. W. Tetrahedron 1994, 50, 8941 https://doi.org/10.1016/S0040-4020(01)85364-3
  52. Littler, B. J.; Ciringh, Y.; Lindsey, J. S. J. Org. Chem. 1999, 64, 2864 https://doi.org/10.1021/jo982452o
  53. Kawa, M.; Frechet, J. M. J. Thin Solid Films 1998, 331, 259 https://doi.org/10.1016/S0040-6090(98)00928-6
  54. Oh, J. B.; Paik, K. L.; Ka, J.-W.; Roh, S.-G.; Nah, M. K.; Kim, H. K. Mat. Sci. Eng. C 2004, 24, 257 https://doi.org/10.1016/j.msec.2003.09.054
  55. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B: Application in Coordination, Organometallic, and Bioinorganic Chemistry, 5th ed; John Wiley & Sons: New York, 1997; pp 59-62
  56. Anderson, H. L. Chem. Comm. 1999, 23, 2323
  57. Scheer, H.; Schneider, S. Photosynthetic Light-Harvesting Systems; W. de Gruyter: Berlin, 1988
  58. Jiang, D.-L.; Aida, T. J. Am. Chem. Soc. 1998, 120, 10895 https://doi.org/10.1021/ja9823520
  59. Vogtle, F.; Gorka, M.; Vicinelli, V.; Ceroni, P.; Maestri, M.; Balzani, V. ChemPhysChem. 2001, 2, 769 https://doi.org/10.1002/1439-7641(20011217)2:12<769::AID-CPHC769>3.0.CO;2-6
  60. Adronov, A.; Gilat, S. L.; Frechet, J. M. J.; Ohta, K.; Neuwahl, F. V. R.; Fleming, G. R. J. Am. Chem. Soc. 2000, 122, 1775
  61. Kim, H. K.; Baek, N. S.; Oh, J. B.; Roh, S.-G.; Kim, Y. H.; Nah, M. K.; Hong, K.-S.; Song, B. J.; Zhou, G. J. Nonlinear Optical Physics & Materials 2005, in press
  62. Baek, N. S.; Kim, Y. H.; Roh, S.-G.; Kim, H. K. Advanced Materials, submitted (2005)
  63. Advanced Materials Baek, N. S.;Kim, Y. H.;Roh, S.-G.;Kim, H. K.

Cited by

  1. Design, Synthesis and Photostability of Novel 1,8-naphthalimide PAMAM Light-harvesting Dendrons vol.21, pp.1, 2011, https://doi.org/10.1007/s10895-010-0689-y
  2. Wavelength Conversion Lanthanide(III)-cored Complex for Highly Efficient Dye-sensitized Solar Cells vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2743
  3. Luminescent Lanthanide Complexes for Advanced Photonics Applications vol.1, pp.1, 2012, https://doi.org/10.5857/RCP.2012.1.1.001
  4. } (L = 3-Pyridinepropinoate, Ln = Eu, Tb, Nd) vol.12, pp.6, 2012, https://doi.org/10.1021/cg300256k
  5. )-cored complexes based on boron dipyrromethene (Bodipy) ligands for NIR emission vol.36, pp.3, 2012, https://doi.org/10.1039/C2NJ20786A
  6. Lanthanide(III) dendrimer complexes based on diphenylquinoxaline derivatives for photonic amplification vol.21, pp.5, 2013, https://doi.org/10.1007/s13233-013-1100-z
  7. Synthesis and Photophysical Properties of Luminescent Lanthanide Complexes Based on Dansyl- N -Methyl-Aminobenzoic Acid for Advanced Photonics Applications vol.446, pp.1, 2006, https://doi.org/10.1080/15421400500379962
  8. Rational Design, Exploratory Synthesis and Lanthanide Emission Efficiency Comparison of Lanthanide(III)-cored Complexes Based on Naphthalene Acid Ligands for Efficient Energy Transfer Pathways vol.27, pp.11, 2005, https://doi.org/10.5012/bkcs.2006.27.11.1729
  9. Energy Transfer Pathway in Luminescent Lanthanide Complexes Based on Dansyl-N-methylaminobenzoic Acid through Intramolecular Charge Transfer State for Near Infrared Emission vol.28, pp.8, 2005, https://doi.org/10.5012/bkcs.2007.28.8.1249
  10. Sensitized Near IR Luminescence of Er(Ⅲ) Ion in Lanthanide Complexes Based on Diketone Derivatives: Synthesis and Photophysical Behaviors vol.28, pp.8, 2005, https://doi.org/10.5012/bkcs.2007.28.8.1256
  11. Novel Erbium(III)-Encapsulated Complexes Based on ${\pi}$-Extended Anthracene Ligands Bearing G3-Aryl-Ether Dendron: Synthesis and Photophysical Studies vol.17, pp.9, 2009, https://doi.org/10.1007/bf03218927
  12. The design and synthesis of a novel 1,8-naphthalimide PAMAM light-harvesting dendron with fluorescence “off-on” switching core vol.84, pp.3, 2005, https://doi.org/10.1016/j.dyepig.2009.09.013
  13. Application of scalar-relativistic DFT approach for calculation of structural and electronic properties of mercaptobenzothiazolyl lanthanide complexes with luminescent activity vol.954, pp.1, 2005, https://doi.org/10.1016/j.theochem.2010.04.021
  14. Novel PAMAM light-harvesting antennae based on 1,8-naphthalimide: Synthesis, energy transfer, photophysical and pH sensing properties vol.150, pp.2, 2005, https://doi.org/10.1016/j.snb.2010.08.023
  15. Microwave-assisted Preparation, Structures, and Photoluminescent Properties of [Ln(NO3)2(H2O)3(L)2](NO3)(H2O) {Ln=Tb, Eu;L= vol.32, pp.6, 2005, https://doi.org/10.5012/bkcs.2011.32.6.1859