References
- Perssen, P.-A.; Holmberg, R.; Lee, J. Rock Blasting and Explosives Engineering; CRC Press: Baca Raton, FL, 1993
- Koehler, J.; Meyer, R. Explosives, 4th ed.; VCH: Weinheim, Germany, 1993
- Coffey, C. S.; DeVost, V. F. Propel. Explos. Pyrotech. 1995, 20, 105 https://doi.org/10.1002/prep.19950200302
- Brill, T. B.; James, K. J. Chem. Rev. 1993, 2667
- Zeman, S.; Krupka, M. Propel. Explos. Pyrotech. 2003, 28, 301 https://doi.org/10.1002/prep.200300018
- Zeman, S. Propel. Explos. Pyrotech. 2003, 28, 308 https://doi.org/10.1002/prep.200300021
- Zeman, S.; Krupka, M. Propel. Explos. Pyrotech. 2003, 28, 249 https://doi.org/10.1002/prep.200300012
- Zeman, S. Propel. Explos. Pyrotech. 2000, 25, 66 https://doi.org/10.1002/(SICI)1521-4087(200004)25:2<66::AID-PREP66>3.0.CO;2-Q
- Politzer, P.; Murray, J. S.; Lane, P.; Sjoberg, P.; Adolph, H. G. Chem. Phys. Lett. 1991, 181, 78 https://doi.org/10.1016/0009-2614(91)90225-X
- Politzer, P.; Murray, J. S. Mol. Phys. 1995, 86, 251 https://doi.org/10.1080/00268979500101981
- Rice, B.; Hare, J. J. J. Phys. Chem. A 2002, 106, 1770 https://doi.org/10.1021/jp012602q
- Storm, C. B.; Stine, J. R.; Kramer, J. F. Sensitivity Relationship in Energetic Materials; Los Alamos National Laboratory, LAUR-89-2936, 1989
- Storm, C. B.; Stine, J. R.; Kramer, J. F. In Chemistry and Physics of Energetic Materials; Bulusu, S. N., Ed.; Kluwer Academic Press: Dordrecht, Netherlands, 1990; p 605
- Nefati, H.; Cense, J.-M.; Legendre, J.-J. J. Chem. Inf. Comput. Sci. 1996, 36, 804 https://doi.org/10.1021/ci950223m
- Cerius Modeling Environment, Relaese 4.0; Accelrys Inc.: San Diego, 1999
- Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902 https://doi.org/10.1021/ja00299a024
- Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. J. Phys. Chem. A 1998, 102, 3762 https://doi.org/10.1021/jp980230o
- Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design, 2nd ed.; Wiley-VCH: Weinheim, Germany, 1999
- Neural Networks in QSAR and Drug Design; Devillers, J., Ed.; Academic Press: London, 1996
- Wold, S.; Johansson, E.; Cocchi, M. In 3D-QSAR in Drug Design. Theory Methods and Applications; Kubynyi, H., Ed.; ESCOM: Leiden, Netherlands, 1993; pp 523-550
- Myers, R. H. Classical and Modern Regression with Applications, 2nd ed.; Duxbury Press: Belmont, CA, 1990
- Cho, D. H.; Lee S. K.; Kim, B. T.; No, K. T. Bull. Korean Chem. Soc. 2001, 22, 388
- Karelson, M.; Lobonov, V. S. Chem. Rev. 1996, 96, 1027 https://doi.org/10.1021/cr950202r
- Lee, K. W.; Kwon, S. Y.; Hwang, S.; Lee, J.-U.; Kim, H. Bull. Korean Chem. Soc. 1996, 17, 147
Cited by
- Simple Relationship for Predicting Impact Sensitivity of Nitroaromatics, Nitramines, and Nitroaliphatics vol.35, pp.2, 2009, https://doi.org/10.1002/prep.200800078
- Computational design and structure–property relationship studies on heptazines vol.17, pp.11, 2011, https://doi.org/10.1007/s00894-011-0959-x
- A Predictive Study on Molecular and Explosive Properties of 1-Aminoimidazole Derivatives vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2319
- Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: A brief review vol.113, pp.8, 2013, https://doi.org/10.1002/qua.24209
- Theoretical Shock Sensitivity Index for Explosives vol.116, pp.7, 2012, https://doi.org/10.1021/jp209730a
- Prediction of Impact Sensitivity of Nonheterocyclic Nitroenergetic Compounds Using Genetic Algorithm and Artificial Neural Network vol.30, pp.2, 2012, https://doi.org/10.1080/07370652.2010.550598
- Global and local quantitative structure-property relationship models to predict the impact sensitivity of nitro compounds vol.31, pp.3, 2012, https://doi.org/10.1002/prs.11499
- Review of Existing QSAR/QSPR Models Developed for Properties Used in Hazardous Chemicals Classification System vol.51, pp.49, 2012, https://doi.org/10.1021/ie301079r
- Toward a Physically Based Quantitative Modeling of Impact Sensitivities vol.117, pp.10, 2013, https://doi.org/10.1021/jp311677s
- QSPR prediction of physico-chemical properties for REACH vol.24, pp.4, 2013, https://doi.org/10.1080/1062936X.2013.773372
- A New General Correlation for Predicting Impact Sensitivity of Energetic Compounds vol.38, pp.6, 2013, https://doi.org/10.1002/prep.201200128
- Predicting Impact Sensitivities of Nitro Compounds on the Basis of a Semi-empirical Rate Constant vol.118, pp.41, 2014, https://doi.org/10.1021/jp507057r
- A General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes vol.115, pp.24, 2015, https://doi.org/10.1021/acs.chemrev.5b00215
- Two dimensional analysis between the performance and the sensitivity of methylnitroimidazole derivatives vol.28, pp.6, 2015, https://doi.org/10.5806/AST.2015.28.6.430
- Kriging models for forecasting crude unit overhead corrosion vol.33, pp.7, 2016, https://doi.org/10.1007/s11814-016-0083-9
- Analysis of air blast effect for explosives in a large scale detonation pp.1975-7220, 2017, https://doi.org/10.1007/s11814-017-0227-6
- Prediction of Detonation Pressure of Aluminized Explosive by Artificial Neural Network vol.641-642, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.641-642.460
- -phenyl-pyrazoles and Indazoles: Mononitro, Dinitro, and Trinitro Derivatives vol.55, pp.1, 2018, https://doi.org/10.1002/jhet.3026
- Neural networks study on the correlation between impact sensitivity and molecular structures for nitramine explosives vol.17, pp.5, 2006, https://doi.org/10.1007/s11224-006-9101-6
- Energetic mono and dibasic 5-dinitromethyltetrazolates: synthesis, properties, and particle processing vol.17, pp.36, 2007, https://doi.org/10.1039/b708041g
- Novel correlation for predicting impact sensitivity of nitroheterocyclic energetic molecules vol.141, pp.3, 2005, https://doi.org/10.1016/j.jhazmat.2006.07.046
- Prediction of shock sensitivity of explosives based on small-scale gap test vol.145, pp.1, 2005, https://doi.org/10.1016/j.jhazmat.2006.10.091
- Synthesis, characterization, thermal and explosive properties of potassium salts of trinitrophloroglucinol vol.147, pp.1, 2005, https://doi.org/10.1016/j.jhazmat.2007.01.043
- Prediction of impact sensitivity of nitroaliphatic, nitroaliphatic containing other functional groups and nitrate explosives vol.148, pp.3, 2005, https://doi.org/10.1016/j.jhazmat.2007.03.022
- Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
- Development of quantitative structure-property relationships for predictive modeling and design of energetic materials vol.27, pp.3, 2005, https://doi.org/10.1016/j.jmgm.2008.06.003
- A simple approach for predicting impact sensitivity of polynitroheteroarenes vol.166, pp.2, 2005, https://doi.org/10.1016/j.jhazmat.2008.12.022
- New Correlations for Predicting Impact Sensitivities of Nitro Energetic Compounds vol.28, pp.1, 2005, https://doi.org/10.1080/07370650903193281
- MATEO: A software package for the molecular design of energetic materials vol.176, pp.1, 2005, https://doi.org/10.1016/j.jhazmat.2009.11.030
- MS-HEMs: An On-line Management System for High-Energy Molecules at ADD and BMDRC in Korea vol.33, pp.3, 2005, https://doi.org/10.5012/bkcs.2012.33.3.855
- QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors vol.36, pp.None, 2005, https://doi.org/10.1016/j.jmgm.2012.03.002
- Prediction of Detonation Velocity of Aluminized Explosive by Artificial Neural Network vol.790, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/amr.790.673
- 트리나이트로이미다졸 치환체들의 화약성능 및 감도 예측 분석 vol.20, pp.4, 2005, https://doi.org/10.9766/kimst.2017.20.4.543
- Applying machine learning to balance performance and stability of high energy density materials vol.24, pp.3, 2005, https://doi.org/10.1016/j.isci.2021.102240
- Artificial Neural Networks for Pyrolysis, Thermal Analysis, and Thermokinetic Studies: The Status Quo vol.26, pp.12, 2005, https://doi.org/10.3390/molecules26123727