DOI QR코드

DOI QR Code

Characterization of the ZnSe/ZnS Core Shell Quantum Dots Synthesized at Various Temperature Conditions and the Water Soluble ZnSe/ZnS Quantum Dot

  • Hwang, Cheong-Soo (Department of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Cho, Ill-Hee (Department of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University)
  • Published : 2005.11.20

Abstract

ZnSe/ZnS, UV-blue luminescent core shell quantum dots, were synthesized via a thermal decomposition reaction of organometallic zinc and solvent coordinated Selenium (TOPSe) in a hot solvent mixture. The synthetic conditions of the core (ZnSe) and the shell (ZnS) were independently studied at various reaction temperature conditions. The obtained colloidal nanocrystals at corresponding temperatures were characterized for their optical properties by UV-vis, room temperature solution photoluminescence (PL) spectroscopy, and further obtained powders were characterized by XRD, TEM, and EDXS analyses. The synthetic temperature condition to obtain the best PL emission intensity for the ZnSe core was 300 ${^{\circ}C}$, and for the optimum shell capping, the temperature was 135 ${^{\circ}C}$. At this temperature, solution PL spectrum showed a narrow emission peak at 427 nm with a PL efficiency of 15%. In addition, the measured particle sizes for the ZnSe/ZnS nanocomposite via TEM were in the range of 5 to 12 nm. Furthermore, we have synthesized water-soluble ZnSe/ZnS nanoparticles by capping the ZnSe/ZnS hydrophobic surface with mercaptoacetate (MAA) molecules. For the obtained aqueous colloidal solution, the UV-vis spectrum showed an absorption peak at 250 nm, and the solution PL emission spectrum showed a peak at 425 nm, which is similar to that for hydrophobic quantum dot ZnSe/ZnS. However, the calculated PL efficiency was relatively low (0.1%) due to the luminescence quenching by water and MAA molecules. The capping ligand was also characterized by FT-IR spectroscopy, with the carbonyl stretching peak in the mercaptoacetate molecule appearing at 1575 $cm ^{-1}$. Finally, the particle sizes of the MAA capped ZnSe/ZnS were measured by TEM, showing a range of 12 to 17 nm.

Keywords

References

  1. Alivisatos, P. J. Phys. Chem. 1996, 100, 13226 https://doi.org/10.1021/jp9535506
  2. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 https://doi.org/10.1021/ja00072a025
  3. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58 https://doi.org/10.1002/adma.200390011
  4. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47 https://doi.org/10.1038/nbt767
  5. Heath, J. R. Acc. Chem. Res. 1999, 32
  6. Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102, 3655 https://doi.org/10.1021/jp9810217
  7. Revaprasadu, N.; Malik, M. A.; O'Brien, P. J. Mater. Chem. 1998, 8, 1885 https://doi.org/10.1039/a802705f
  8. Chestnoy, N.; Hull, R.; Brus, L. E. J. Chem. Phys. 1986, 85, 2237 https://doi.org/10.1063/1.451119
  9. Song, K. K.; Lee, S. H. Curr. Appl. Phys. 2001, 1, 169 https://doi.org/10.1016/S1567-1739(01)00012-8
  10. Mattousi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142 https://doi.org/10.1021/ja002535y
  11. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016 https://doi.org/10.1126/science.281.5385.2016
  12. Alivisatos, P. Science 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
  13. Scmidt, M.; Grun, M.; Petillon, S.; Kurtz, E.; Klingshirn, C. Appl. Phys. Lett. 2000, 77, 85 https://doi.org/10.1063/1.126885
  14. Shavel, A.; Gaponik, N.; Eychmuller, A. J. Phys. Chem. B 2004, 108, 5905 https://doi.org/10.1021/jp037941t
  15. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229 https://doi.org/10.1021/j100820a009
  16. Jun, Y.; Koo, J.; Cheon, J. Chem. Commun. 2000, 1243
  17. Ludolph, B.; Malik, M. A.; O'Brien, P.; Revaprasadu, N. Chem. Commun. 1998, 913
  18. Reiss, P.; Quemard, G.; Carayon, S.; Bleuse, J.; Chandezon, F.; Pron, A. Mater. Chem. Phys. 2004, 84, 10 https://doi.org/10.1016/j.matchemphys.2003.11.002
  19. Bruchez, S.; Moronne, M.; Gin, P.; Alivisatos, A. P. Science 1998, 281, 2013
  20. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Matoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 9463 https://doi.org/10.1021/jp971091y
  21. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861
  22. Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845 https://doi.org/10.1021/la990165p
  23. Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122 https://doi.org/10.1021/ja991662v
  24. Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Coll. Surf. A Phys. Chem. and Eng. Asp. 1997, 127, 39 https://doi.org/10.1016/S0927-7757(96)03968-4
  25. Chung, C. K.; Lee, M. H. Bull. Korean Chem. Soc. 2004, 25(10), 1461 https://doi.org/10.5012/bkcs.2004.25.10.1461

Cited by

  1. A Theoretical Study on the Electronic Structure of ZnSe/ZnS and ZnS/ZnSe Core/Shell Nanoparticles vol.112, pp.31, 2008, https://doi.org/10.1021/jp801781s
  2. Investigation of electronic and optical properties of (CdSe/ZnS/CdSe/ZnS) quantum dot–quantum well heteronanocrystal vol.13, pp.3, 2011, https://doi.org/10.1007/s11051-010-0112-2
  3. Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting vol.2, pp.1-6, 2011, https://doi.org/10.1007/s12645-011-0015-7
  4. Chitosan Aerogels Exhibiting High Surface Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study vol.60, pp.12, 2011, https://doi.org/10.1080/00914037.2011.553849
  5. Synthesis of a White-Light-Emitting ZnSe:Mn Nanocrystal via Thermal Decomposition Reaction of Organometallic Precursors vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.321
  6. Synthesis and characterization of fluorescent chitosan–ZnSe/ZnS nanoparticles for potential drug carriers vol.5, pp.49, 2015, https://doi.org/10.1039/C5RA02933C
  7. Structural, morphological and electroluminescence studies of Zno:Co nanophosphor vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0298-y
  8. Synthesis of ZnS/SiO2 Core-Shell by Sol-Gel Process and Covering then with Gold Nanoparticle and Study of its Photoluminescence Properties vol.326-328, pp.1662-9507, 2012, https://doi.org/10.4028/www.scientific.net/DDF.326-328.238
  9. Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23507-y
  10. Synthesis of the Water Dispersible L-Valine Capped ZnS:Mn Nanocrystal and the Crystal Structure of the Precursor Complex: [Zn(Val)2(H2O)] vol.27, pp.11, 2005, https://doi.org/10.5012/bkcs.2006.27.11.1809
  11. Development of NIR Emitted CdTe Quantum Dots by Concentration Control Method vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1637
  12. Surfactant Induced Photostability Enhancements of Thiol Coated Quantum Dot Nanocolloids vol.29, pp.1, 2005, https://doi.org/10.5012/bkcs.2008.29.1.249
  13. Reaction Temperature Dependent Formations of the Zero- and One-Dimensional ZnS:Mn Nanocrystals vol.29, pp.2, 2005, https://doi.org/10.5012/bkcs.2008.29.2.467
  14. Facile Synthesis of Photoluminescent ZnS and ZnSe Nanopowders vol.24, pp.18, 2005, https://doi.org/10.1021/la800921a
  15. 다양한 온도 조건에서의 ZnS:Mn/ZnS 코어-쉘 양자점의 합성 및 광 특성에 관한 연구 vol.53, pp.6, 2005, https://doi.org/10.5012/jkcs.2009.53.6.677
  16. 다양한 온도 조건에서의 ZnS:Mn/ZnS 코어-쉘 양자점의 합성 및 광 특성에 관한 연구 vol.53, pp.6, 2005, https://doi.org/10.5012/jkcs.2009.53.6.677
  17. Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids vol.30, pp.1, 2005, https://doi.org/10.5012/bkcs.2009.30.1.129
  18. Optical, structural and surface morphological studies of bean-like triethylamine capped zinc selenide nanostructures vol.63, pp.22, 2005, https://doi.org/10.1016/j.matlet.2009.06.012
  19. EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1997
  20. Influence of surfactant structures in luminescence enhancement dynamics during nucleation and growth of aqueous ZnS nanoparticles and their photoactivation due to illumination with UV/visible light vol.130, pp.12, 2005, https://doi.org/10.1016/j.jlumin.2010.07.022
  21. Thermodynamic instability of ZnSe/ZnS core/shell quantum dots vol.111, pp.11, 2005, https://doi.org/10.1063/1.4728176
  22. Sensitive fluorescence response of ZnSe(S) quantum dots: an efficient fluorescence probe vol.87, pp.6, 2005, https://doi.org/10.1088/0031-8949/87/06/065802
  23. Single-step in-situ synthesis and optical properties of ZnSe nanostructured dielectric nanocomposites vol.115, pp.13, 2005, https://doi.org/10.1063/1.4870292
  24. RGB Light Emissions from ZnSe Based Nanocrystals: ZnSe, ZnSe:Cu, and ZnSe:Mn vol.35, pp.12, 2005, https://doi.org/10.5012/bkcs.2014.35.12.3601
  25. Chlorin e6–ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy vol.26, pp.5, 2005, https://doi.org/10.1088/0957-4484/26/5/055102
  26. 수열합성법에 의한 Zinc Selenide 나노 분말 합성 및 미세구조 특성 연구 vol.27, pp.9, 2005, https://doi.org/10.3740/mrsk.2017.27.9.459
  27. Facile synthesis of manganese (II)-doped ZnSe nanocrystals with controlled dimensionality vol.151, pp.24, 2005, https://doi.org/10.1063/1.5128511