References
- Alivisatos, P. J. Phys. Chem. 1996, 100, 13226 https://doi.org/10.1021/jp9535506
- Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 https://doi.org/10.1021/ja00072a025
- Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58 https://doi.org/10.1002/adma.200390011
- Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47 https://doi.org/10.1038/nbt767
- Heath, J. R. Acc. Chem. Res. 1999, 32
- Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102, 3655 https://doi.org/10.1021/jp9810217
- Revaprasadu, N.; Malik, M. A.; O'Brien, P. J. Mater. Chem. 1998, 8, 1885 https://doi.org/10.1039/a802705f
- Chestnoy, N.; Hull, R.; Brus, L. E. J. Chem. Phys. 1986, 85, 2237 https://doi.org/10.1063/1.451119
- Song, K. K.; Lee, S. H. Curr. Appl. Phys. 2001, 1, 169 https://doi.org/10.1016/S1567-1739(01)00012-8
- Mattousi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142 https://doi.org/10.1021/ja002535y
- Chan, W. C. W.; Nie, S. Science 1998, 281, 2016 https://doi.org/10.1126/science.281.5385.2016
- Alivisatos, P. Science 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
- Scmidt, M.; Grun, M.; Petillon, S.; Kurtz, E.; Klingshirn, C. Appl. Phys. Lett. 2000, 77, 85 https://doi.org/10.1063/1.126885
- Shavel, A.; Gaponik, N.; Eychmuller, A. J. Phys. Chem. B 2004, 108, 5905 https://doi.org/10.1021/jp037941t
- Melhuish, W. H. J. Phys. Chem. 1961, 65, 229 https://doi.org/10.1021/j100820a009
- Jun, Y.; Koo, J.; Cheon, J. Chem. Commun. 2000, 1243
- Ludolph, B.; Malik, M. A.; O'Brien, P.; Revaprasadu, N. Chem. Commun. 1998, 913
- Reiss, P.; Quemard, G.; Carayon, S.; Bleuse, J.; Chandezon, F.; Pron, A. Mater. Chem. Phys. 2004, 84, 10 https://doi.org/10.1016/j.matchemphys.2003.11.002
- Bruchez, S.; Moronne, M.; Gin, P.; Alivisatos, A. P. Science 1998, 281, 2013
- Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Matoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 9463 https://doi.org/10.1021/jp971091y
- Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861
- Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845 https://doi.org/10.1021/la990165p
- Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122 https://doi.org/10.1021/ja991662v
- Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Coll. Surf. A Phys. Chem. and Eng. Asp. 1997, 127, 39 https://doi.org/10.1016/S0927-7757(96)03968-4
- Chung, C. K.; Lee, M. H. Bull. Korean Chem. Soc. 2004, 25(10), 1461 https://doi.org/10.5012/bkcs.2004.25.10.1461
Cited by
- A Theoretical Study on the Electronic Structure of ZnSe/ZnS and ZnS/ZnSe Core/Shell Nanoparticles vol.112, pp.31, 2008, https://doi.org/10.1021/jp801781s
- Investigation of electronic and optical properties of (CdSe/ZnS/CdSe/ZnS) quantum dot–quantum well heteronanocrystal vol.13, pp.3, 2011, https://doi.org/10.1007/s11051-010-0112-2
- Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting vol.2, pp.1-6, 2011, https://doi.org/10.1007/s12645-011-0015-7
- Chitosan Aerogels Exhibiting High Surface Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study vol.60, pp.12, 2011, https://doi.org/10.1080/00914037.2011.553849
- Synthesis of a White-Light-Emitting ZnSe:Mn Nanocrystal via Thermal Decomposition Reaction of Organometallic Precursors vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.321
- Synthesis and characterization of fluorescent chitosan–ZnSe/ZnS nanoparticles for potential drug carriers vol.5, pp.49, 2015, https://doi.org/10.1039/C5RA02933C
- Structural, morphological and electroluminescence studies of Zno:Co nanophosphor vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0298-y
- Synthesis of ZnS/SiO2 Core-Shell by Sol-Gel Process and Covering then with Gold Nanoparticle and Study of its Photoluminescence Properties vol.326-328, pp.1662-9507, 2012, https://doi.org/10.4028/www.scientific.net/DDF.326-328.238
- Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23507-y
- Synthesis of the Water Dispersible L-Valine Capped ZnS:Mn Nanocrystal and the Crystal Structure of the Precursor Complex: [Zn(Val)2(H2O)] vol.27, pp.11, 2005, https://doi.org/10.5012/bkcs.2006.27.11.1809
- Development of NIR Emitted CdTe Quantum Dots by Concentration Control Method vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1637
- Surfactant Induced Photostability Enhancements of Thiol Coated Quantum Dot Nanocolloids vol.29, pp.1, 2005, https://doi.org/10.5012/bkcs.2008.29.1.249
- Reaction Temperature Dependent Formations of the Zero- and One-Dimensional ZnS:Mn Nanocrystals vol.29, pp.2, 2005, https://doi.org/10.5012/bkcs.2008.29.2.467
- Facile Synthesis of Photoluminescent ZnS and ZnSe Nanopowders vol.24, pp.18, 2005, https://doi.org/10.1021/la800921a
- 다양한 온도 조건에서의 ZnS:Mn/ZnS 코어-쉘 양자점의 합성 및 광 특성에 관한 연구 vol.53, pp.6, 2005, https://doi.org/10.5012/jkcs.2009.53.6.677
- 다양한 온도 조건에서의 ZnS:Mn/ZnS 코어-쉘 양자점의 합성 및 광 특성에 관한 연구 vol.53, pp.6, 2005, https://doi.org/10.5012/jkcs.2009.53.6.677
- Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids vol.30, pp.1, 2005, https://doi.org/10.5012/bkcs.2009.30.1.129
- Optical, structural and surface morphological studies of bean-like triethylamine capped zinc selenide nanostructures vol.63, pp.22, 2005, https://doi.org/10.1016/j.matlet.2009.06.012
- EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1997
- Influence of surfactant structures in luminescence enhancement dynamics during nucleation and growth of aqueous ZnS nanoparticles and their photoactivation due to illumination with UV/visible light vol.130, pp.12, 2005, https://doi.org/10.1016/j.jlumin.2010.07.022
- Thermodynamic instability of ZnSe/ZnS core/shell quantum dots vol.111, pp.11, 2005, https://doi.org/10.1063/1.4728176
- Sensitive fluorescence response of ZnSe(S) quantum dots: an efficient fluorescence probe vol.87, pp.6, 2005, https://doi.org/10.1088/0031-8949/87/06/065802
- Single-step in-situ synthesis and optical properties of ZnSe nanostructured dielectric nanocomposites vol.115, pp.13, 2005, https://doi.org/10.1063/1.4870292
- RGB Light Emissions from ZnSe Based Nanocrystals: ZnSe, ZnSe:Cu, and ZnSe:Mn vol.35, pp.12, 2005, https://doi.org/10.5012/bkcs.2014.35.12.3601
- Chlorin e6–ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy vol.26, pp.5, 2005, https://doi.org/10.1088/0957-4484/26/5/055102
- 수열합성법에 의한 Zinc Selenide 나노 분말 합성 및 미세구조 특성 연구 vol.27, pp.9, 2005, https://doi.org/10.3740/mrsk.2017.27.9.459
- Facile synthesis of manganese (II)-doped ZnSe nanocrystals with controlled dimensionality vol.151, pp.24, 2005, https://doi.org/10.1063/1.5128511