DOI QR코드

DOI QR Code

A Review of Ac-impedance Models for the Analysis of the Oxygen Reduction Reaction on the Porous Cathode Electrode for Solid Oxide Fuel Cell

  • Kim, Ju-Sik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Pyun, Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 발행 : 2005.05.01

초록

This article covers the theoretical ac-impedance models for the analysis of oxygen reduction on the porous cathode electrode f3r solid oxide fuel cell (SOFC). Firstly, ac-impedance models were explained on the basis of the mechanism of oxygen reduction, which were classified into the rate-determining steps; (i) adsorption of oxygen atom on the electrode surface, (ii) diffusion of adsorbed oxygen atom along the electrode surface towards the three-phase (electrode/electrolyte/gas) boundaries, (iii) surface diffusion of adsorbed oxygen atom m ixed with the adsorption reaction of oxygen atom on the electrode surface and (iv) diffusion of oxygen vacancy through the electrode coupled with the charge transfer reaction at the electrode/gas interface. In each section for ac-impedance model, the representative impedance plots and the interpretation of important parameters attributed to the oxygen reduction reaction were explained. Finally, we discussed in detail the applications of the proposed theoretical ac-impedance models to the real electrode of SOFC system.

키워드

참고문헌

  1. W. Vielstich, H. A. Gasteiger, and A. Lamm, Handbook of Fuel Cells-Fundamentals, Technology and Applications, John Wiley & Sons, New York, pp. 588-600 (2003)
  2. J. Mizusaki, K. Amano, S. Yamauchi, and K. Fueki, 'Electrode Reaction at Pt, $O_2(g)$/Stabilized Zirconia Interfaces. Part I: Theoretical Consideration of Reaction Model', Solid State Ionics, 22, 313 (1987)
  3. J. Mizusaki, H. Tagawa, K. Tsuneyoshi, and A. Sawata, 'Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode $La_{0.6}Ca_{0.4}MnO_3/YSZ$', J. Electrochem. Soc., 138, 1867 (1991)
  4. M. J. L. Ostergard and M. Mogensen, 'Ac Impedance Study of the Oxygen Reduction Mechanism on $La_{1x}Sr_xMnO_3$ in Solid Oxide Fuel Cells', Electrochim. Acta, 38, 2015 (1993) https://doi.org/10.1016/0013-4686(93)80334-V
  5. A. M. Svensson, S. Sunde, and K. Nisancioglu, 'A Mathematical Model of the Porous SOFC Cathode', Solid State Ionics, 86-88, 1211 (1996) https://doi.org/10.1016/0167-2738(96)00289-5
  6. Y. Matsuzaki and I. Yasuda, 'Relationship between the Steady-State Polarization of the SOFC Air Electrode, $La_{0.6}Sr_{0.4}MnO_{3+\delta}/YSZ$, and its Complex Impedance Measured at the Equilibrium Potential', Solid State Ionics, 126, 307 (1999) https://doi.org/10.1016/S0167-2738(99)00237-4
  7. G. W. Coffey, L. R. Pederson, and P. C. Rieke, 'Competition Between Bulk and Surface Pathways in Mixed Ionic Electronic Conducting Oxygen Electrodes', J. Electrochem. Soc., 150, A1139 (2003) https://doi.org/10.1149/1.1529673
  8. X. J. Chen, K. A. Khor, and S. H. Chan, 'Electrochemical Behavior of $La(Sr)MnO_3$ Electrode under Cathodic and Anodic Polarization', Solid State Ionics, 167, 379 (2004). https://doi.org/10.1016/j.ssi.2003.08.049
  9. A. J. A. Wmnubst, A. H. A. Scharenborg, and A. J. Burggraaf, 'The Electrode Resistance of $ZrO_2-Y_2O_3(-Bi_2O_3)$ Solid Electrolytes with Pt Electrodes', Solid State Ionics, 14,319 (1984) https://doi.org/10.1016/0167-2738(84)90116-4
  10. B. Gharbage, T. Pagnier, and A. Hammou, 'Oxygen Reduction at $La_{0.5}Sr_{0.5}MnO_3$ Thin Film/Yttria-Stabilized Zirconia Interface Studied by Impedance Spectroscopy', J. Electrochem. Soc., 141,2118 (1994) https://doi.org/10.1149/1.2055071
  11. R. Jimenez, T. Kloidt, and M. Kleitz, 'Reaction-Zone Expansions and Mechanism of the $O_2$, Ag/Yttria-Stabilized Zirconia Electrode Reaction', J. Electrochem. Soc., 144, 582 (1997) https://doi.org/10.1149/1.1837451
  12. N. Q. Minh, S. P. S. Badwal, M. J. Bannister, and R. H. J. Hannink (Ed.), Science and Technology of Zirconia, Technomic Publishing Co., Lancaster, pp. 652-687 (1993)
  13. N. Q. Minh and T. Takahashi, Science, Technology of Ceramic Fuel Cells, Elsevier Science B.V., Amsterdam, pp. 117-146 (1995)
  14. E. Siebert, A. Hammouche, and M. Kleitz, 'Impedance Spectroscopy Analysis of $La_{1x}Sr_xMnO_3$- Yttria-Stabi1ized Zirconia Electrode Kinetics', Electrochim. Acta, 40, 1741 (1995) https://doi.org/10.1016/0013-4686(94)00361-4
  15. K. Tsuneyoshi, K. Mori, and A. Sawata, 'Kinetic Studies on the Reaction at the $La_{0.6}Ca_{0.4}MnO_3/YSZ$ Interface, as an SOFC Air Electrode', Solid State Ionics, 35, 263 (1989) https://doi.org/10.1016/0167-2738(89)90306-8
  16. X. J. Chen, K. A. Khor, and S. H. Chan, 'Identification of $O_2$ Reduction Processes at Yttria Stabilized Zirconiallsoped Lanthanum Manganite Interface', J. Power Sources, 123, 17 (2003) https://doi.org/10.1016/S0378-7753(03)00436-1
  17. M. J. Verkerk and A. J. Burggraaf, 'Oxygen Transfer on Substituted $ZrO_2,\;BiO_3\;and\;CeO_2$ Electrolytes with Platinum Electrodes', J. Electrochem. Soc., 130, 78 (1983) https://doi.org/10.1149/1.2119686
  18. R. U. Atangulov and I.V. Murygin, 'Gas Electrode Impedance with Slow adsorption and Surface Diffusion', Solid State Ionics, 67, 9 (1994)
  19. B. A. Boukamp and H. J. M. Bouwmeester, 'Interpretation of the Gerischer Impedance in Solid State Ionics', Solid State Ionics, 157, 29 (2003) https://doi.org/10.1016/S0167-2738(02)00185-6
  20. J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, 'Nonstoichiometry of the Perovskite- Type Oxides $La_{1x}Sr_xCoO_3$', J. Solid State Chem., 80, 102 (1989) https://doi.org/10.1016/S0167-2738(99)00323-9
  21. S. P. Jiang, 'A Comparison of $O_2$ Reduction Reactions on Porous $(La,Sr)MnO_3$ and$(La,Sr)(Co,Fe)O_3$ Electrodes', Solid State Ionics, 146, 1 (2002) https://doi.org/10.1016/S0167-2738(01)00997-3
  22. S. B. Adler, J. A. Lane, and B. C. H. Steele, 'Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes', J. Electrochem. Soc., 143, 3554 (1996) https://doi.org/10.1149/1.1837252
  23. J.-S. Kim, S.-I. Pyun, I.-W. Lee, and R.-H, Song, 'Kinetics of Oxygen Reduction on Porous Mixed Conducting $(La_{0.85}Sr_{0.15})_{0.9}MnO_3$ Electrode by Ac-Impedance Analysis', submitted to Electrochim. Acta for publication, (2005) https://doi.org/10.1007/s10008-005-0080-0
  24. S. B. Adler, Chem. Rev., 'Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes ', 104, 4791 (2004) https://doi.org/10.1021/cr020724o
  25. J. Nowotny and M. Rekas, 'Defect Chemistry of $(La,Sr)MnO_3$', J. Am. Ceram. Soc., 81, 67 (1998)
  26. F. W. Poulsen, 'Defect Chemistry Modelling of Oxygen-Stoichiometry, Vacancy Concentrations, and Conductivity of $(La_{1x}Sr_x)_yMnO_{3\pm\delta}$', Solid State Ionics, 129, 145 (2000) https://doi.org/10.1016/S0167-2738(99)00322-7
  27. T. Ioroi, T. Hara, Y. Uchimoto, Z. Ogumi, and Z. Takehara, 'Preparation of Perovskite- Type $La_{1-x}Sr_xMnO_3$ Films by Vapor-Phase Processes and Their Electrochemical Properties II. Effects of Doping Strontium to $LaMnO_3$ on the Electrode Properties', J. Electrochem. Soc., 145, 1999 (1998) https://doi.org/10.1149/1.1838589
  28. S. P. Jiang and J. G Love, 'Origin of the Initial Polarization Behavior of Sr-doped $LaMnO_3$ for $O_2$ Reduction in Solid Oxide Fuel Cells', Solid State Ionics, 138, 183 (2001) https://doi.org/10.1016/S0167-2738(00)00806-7
  29. D. Braunshtein, D. S. Tannhauser, and I. Riess, 'Diffusion-Limited Charge Transport at Platinum Electrodes on Doped $CeO_2$', J. Electrochem. Soc., 128, 82 (1981) https://doi.org/10.1149/1.2127393
  30. J. Sasaki, J. Mizusaki, S. Yamauchi, and Kazuo Fueki, 'Studies on Electrode Processes of Stabilized Zirconia Cell System by Complex Impedance Method', Bull. Chem. Soc. Jpn., 54, 1688 (1981) https://doi.org/10.1246/bcsj.54.1688
  31. S.B. Adler, 'Mechanism and Kinetics of Oxygen Reduction on Porous $La_{1x}Sr_xCoO_{3\delta}$ Electrodes', Solid State Ionics, 111, 125 (1998) https://doi.org/10.1016/S0167-2738(98)00179-9
  32. S. P. Jiang, 'Issues on Development of $(La,Sr)MnO_3$ Cathode for Solid Oxide Fuel Cells', J. Power Sources, 124, 390 (2003) https://doi.org/10.1016/S0378-7753(03)00814-0