Immobilization of Lactobionic Acid on Polyurethane Films and Their Interaction with Hepatocytes

  • Meng Wan (Department of Chemical Engineering and Polymer Science, Yanbian University, Department of Polymer Science, Kyungpook National University) ;
  • Jung Kyung-Hye (Department of Polymer Science, Kyungpook National University) ;
  • Kang Inn-Kyu (Department of Polymer Science, Kyungpook National University) ;
  • Kwon Oh Hyeong (Department of Polymer Science & Engineering, Kumoh National Institute of Technology) ;
  • Akaike Toshihiro (Department of Biomolecular Engineering, Tokyo Institute of Technology)
  • Published : 2005.06.01

Abstract

Polyurethanes containing z-Iysine segments in the main chain (PULL) were synthesized from 4,4'-diphe-nylmethyl diisocyanate, poly(tetramethylene glycol), and z-Iysine oligomer as a chain extender. The PULL film was treated first with a $10\%$ HBr-acetic acid solution and subsequently with a saturated sodium bicarbonate aqueous solution to produce a primary amine group on the surface (PULL-N). Lactobionic acid (LA)-immobilized PULL (PULL-L) was prepared by the coupling reaction of the PULL surface amine groups and the LA carboxylic acid groups. The surface-modified PULLs were then characterized by attenuated total reflection-Fourier transform infra-red spectroscopy, electron spectroscopy for chemical analysis, atomic force microscopy, and contact angle goniometry. In the hepatocytes adhesion experiment, the cells poorly adhered to the PULL surface, although they adhered moderately well to the PULL-N surface. On the other hand, the cells adhered well to the PULL-L surface, suggesting the good affinity of the surface $\beta$-galactose moieties for hepatocytes. When hepatocytes were cultured in the presence of epidermal growth factor for 48 h, the cells rapidly aggregated on the PULL-L surface, whereas they aggregated only slowly on the other surfaces. The PULL prepared in this study has the potential to be used as a coating material for the enhancement of hepatocyte adhesion.

Keywords

References

  1. M. D. Lelah and S. L. Cooper, Polyurethane in Medicine, CRC Press, Boca Raton, FL,1986
  2. S. Duest, J. Leslie, R. Moore, and K. Amplatz, Radiology, 113, 599 (1974) https://doi.org/10.1148/113.3.599
  3. C. B. Wisman, W. S. Pierce, J. H. Donachy, W. E. Pae, J. L. Meyer, and G. A. Prophet, Trans. Am, Soc. Artif Intern. Organs., 28, 164 (1982)
  4. J. H. Lawson, D. B. Olsen, E. Hershgold, J. Kolff, K. Hadfield, and W. J. Kolff, Trans. Am. Artif Intern. Organs., 21, 368 (1975)
  5. V. Chytry, D. Letoumeur, M. Baudys, and J. Jozefonvicz, J. Biomed. Mater. Res., 31, 265 (1996) https://doi.org/10.1002/(SICI)1097-4636(199606)31:2<265::AID-JBM14>3.0.CO;2-K
  6. I.-K. Kang, O. H. Kwon, Y. M. Lee, and Y. K. Sung, Biomaterials, 17, 841 (1996) https://doi.org/10.1016/0142-9612(96)81422-0
  7. Y. Ito, M. Sisido, and Y. Imanishi, J. Biomed. Mater. Res., 20, 1157 (1986) https://doi.org/10.1002/jbm.820200808
  8. I.-K. Kang, D. K. Baek, Y. M. Lee, and Y. K. Sung, J. Polym. Sci.: Polym. Chem., 36, 2331 (1998) https://doi.org/10.1002/(SICI)1099-0518(19980930)36:13<2331::AID-POLA20>3.0.CO;2-A
  9. D. K. Han, K. D. Park, K. D. Ahn, S. Y. Jeong, and Y. H. Kim, J. Biomed. Mater. Res., 23, 87 (1989) https://doi.org/10.1002/jbm.820231309
  10. K. D. Park, T. Okano, C. Nojiri, and S. W. Kim, J. Biomed. Mater. Res., 22, 977(1988) https://doi.org/10.1002/jbm.820221103
  11. J. Y. Hyun, W. Meng, I.-K. Kang, and D. I. Song, Polym. Adv. Technol., 14, 195 (2003) https://doi.org/10.1002/pat.291
  12. W. Meng, J. Y. Hyun, D. I. Song, and I.-K. Kang, J. Appl. Polym. Sci., 90, 1959 (2003) https://doi.org/10.1002/app.12904
  13. J. A. Rowley, G. Madlabayan, and D. J. Mooney, Biomaterials, 20, 45 (1999) https://doi.org/10.1016/S0142-9612(98)00107-0
  14. S. T. Lopina, G. Wu, E. W. Merrill, and L. G. Cima, Biomaterials, 17, 559 (1996) https://doi.org/10.1016/0142-9612(96)88706-0
  15. Y. C. Lee and R. T. Lee, Neoglycocorlfugates: Preparation and Application, Academic Press, San Diego, CA, 1994
  16. A. Kobayashi, T. Akaike, K. Kobayashi, and H. Sumitomo, Macromol. Chem. Rapid. Commun., 7, 645 (1987)
  17. I.-K. Kang, D. W. Lee, S. K. Lee, and T. Akaike, J. Mater. Sci.: Mater. Med., 14, 611 (2003) https://doi.org/10.1023/A:1024023024094
  18. R. Shibuta, M. Tanaka, M. Sisido, and Y. Imanishi, J. Biomed. Mater. Res., 20, 971 (1986) https://doi.org/10.1002/jbm.820200712
  19. W. Meng, J. Y. Hyun, D. I. Song, and I.-K. Kang, J. Appl. Polym. Sci., 90, 1959 (2003)
  20. D. K. Clark and A. Dilks, J. Polym. Sci.: Polym. Chem. Edn., 17, 957 (1979)
  21. J. H. Lee, J. W. Park, and H. B. Lee, Biomaterials, 12, 443 (1991) https://doi.org/10.1016/0142-9612(91)90140-6
  22. S. Johansson and M. Hook, J. Cell. Biol., 98, 810 (1984) https://doi.org/10.1083/jcb.98.3.810
  23. D.J. Mooney, L. K. Hansen, J. P. Vacanti, R. Langer, S. R. Farmer, and D. E. Ingber, J. Cell. Phys., 151, 497 (1992) https://doi.org/10.1002/jcp.1041510308
  24. A. Kobayashi, M. Goto, T. Sekine, A. Masumoto, N. Yamamoto, K. Kobayashi, and T. Akaike, Artif. Organs., 16, 564 (1992) https://doi.org/10.1111/j.1525-1594.1992.tb00553.x
  25. S.-H. Kim, M. Goto, and T. Akaike, J. Biol. Chem., 276, 35312 (2001) https://doi.org/10.1074/jbc.M009749200
  26. K. Kobayashi, H. Sumitomo, and Y. Ina, Polym. J., 15, 667 (1983) https://doi.org/10.1295/polymj.15.667
  27. J. J. Yoon, Y. S. Nam, J. H. Kim, and T. G. Park, Biotech. Bioeng., 78, 1 (2002) https://doi.org/10.1002/bit.10239
  28. I.-K. Kang, G. J. Kim, O. H. Kwon, and Y. Ito, Biomaterials, 25, 4225 (2004) https://doi.org/10.1016/j.biomaterials.2003.11.004
  29. I. Yang, M. Goto, H. Ise, C. S. Cho, and T. Akaike, Biomaterials, 23, 471 (2002) https://doi.org/10.1016/S0142-9612(01)00129-6
  30. I.-K. Park, J. Yang, H. J. Jeong, H. S. Bom, I. Harada, T. Akaike, S. I. Kim, and C. S. Cho, Biomaterials, 24, 2331 (2003) https://doi.org/10.1016/S0142-9612(03)00108-X
  31. S. A. Pahemik, W. E. Thasler, M. Doser, M. J. Gomez-Lechon, M. J. Castell, H. Planck, and H. G. Koebe, Cells. Tissues. Organs., 168, 170 (2001) https://doi.org/10.1159/000047832
  32. H. Ijima, K. Nakazawa, S. Koyama, M. Kaneko, T. Matsushita, T. Gion, K. Shirabe, M. Shimada, K. Takenaka, K. Sugimachi, and K. Funatsu, Int. J Artif. Organs., 23, 389 (2000)
  33. H. Kurosawa, K. Yasumoto, T. Kimura, and Y. Amano, Biotech. Bioeng., 70, 160 (2000) https://doi.org/10.1002/1097-0290(20001020)70:2<160::AID-BIT5>3.0.CO;2-C
  34. Y. Sato, T. Ochiya, Y. Yasuda, and K. Matsubara, Hepatology, 19, 1023 (1994) https://doi.org/10.1002/hep.1840190430
  35. K. S. Yang, X. L. Guo, W. Meng, J. Y. Hyun, and L-K. Kang, Macromol. Res., 11, 488 (2003) https://doi.org/10.1007/BF03218981
  36. G. Catapano, L. D. Bartolo, V. Vico, and L. Ambrosio, Biomaterials, 22, 659 (2001) https://doi.org/10.1016/S0142-9612(00)00074-0
  37. B. M. Gumbiner, Cell, 84, 345 (1996) https://doi.org/10.1016/S0092-8674(00)81279-9
  38. A. S. Yap, B. R. Stevenson, J. R. Keast, and S. W. Manley, Endocrinology, 136, 4672 (1995) https://doi.org/10.1210/en.136.3.995
  39. X. L. Guo, K. S. Yang, J. H. Hyun, W. S. Kim, D. H. Lee, K. E. Min, L. S. Park, K. H. Seo, C. S. Cho, and I.-K. Kang, J. Biomater. Sci.: Polym. Edn., 14, 551 (2003) https://doi.org/10.1163/15685620360674245