DOI QR코드

DOI QR Code

Effect of Simulated Acid Rain on Antioxidants and Related Enzymes in Garden Balsam (Impatiens balsamina L.)

봉선화(Impatiens balsamina L.)에 대한 pH 수준별 처리가 항산화 물질 및 관련 효소 활성에 미치는 영향

  • Kim Hak Yoon (Faculty of Environmental Studies, Keimyung University)
  • Published : 2005.06.01

Abstract

To investigate the effects of simulated acid rain (SAR) on growth and biochemical defense responses of plant, garden balsam (Impatiens balsamina L.) was subjected to four levels of SAR based on pH (5.6, 4.0, 3.0, 2.0) and placed in the growth chambers for 2 weeks. SAR drastically inhibited both height and dry weight of garden balsam. The content of total carotenoid was tended to decrease, but the level of malondialdehyde was significantly increased by SAR. As the pH levels decreased from 5.6 to 2.0, the content of dehydroascorbate and oxidized glutathione of the plant were significantly increased. The enzyme (superoxide dismutase, ascorbate peroxidase etc.) activities of the plant affected by SAR were increased as the pH decreased. The results indicate that garden balsam may receive oxidative stresses by the application of SAR and by which the plant growth can be significantly retarded. A biochemical protective mechanism might be activated to nullify the oxidative stresses generated through SAR.

산성비가 식물 생장에 미치는 영향과 식물의 생화학적 방어반응을 조사하고자 봉선화를 이용하여 인공 산성비(pH 2.0, 3.0, 4.0, 5.6) 실험을 수행하였다. 산성비의 pH가 낮을수록 생육 피해는 심하게 나타났으며 pH 3.0 이하의 처리에 의해 잎에 암회색 또는 적갈색의 괴사반점이 생성되었다. MDA 함량은 pH 2.0 처리에서 약 $40\%$의 증가를 나타내었다. 산성비의 $H^+$ 부하량 증가에 따라 산화형인 DHA 및 GSSG의 함량이 증가하였다. 항산화효소인 SOD, APX, DHAR, GP등의 활성도 산성비의 $H^+$ 부하량의 증가에 따라 크게 증가하는 것으로 나타났다. 이상의 결과로 볼 때 산성비는 봉선화 식물에 활성산소 생성에 의한 산화스트레스를 일으키며, 이를 무독화하기 위해 식물의 생화학적 방어반응이 작용하는 것으로 사료된다

Keywords

References

  1. Bolin, D. W. and J. Book. 1974. Oxidation of ascorbic acid to dehydroascorbic acid. Science 106, 451
  2. Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Am. Rev. Plant Physiol. 33, 73-96 https://doi.org/10.1146/annurev.pp.33.060182.000445
  3. Evans, J. S. and T. M. Curry. 1979. Differential response of plant foliage to simulated acid rain. Amer. J. Bot. 66, 953-962 https://doi.org/10.2307/2442237
  4. Fan, H. B. and Y. H. Wang. 2000. Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China. Forest Eco. Manage. 126, 321-329 https://doi.org/10.1016/S0378-1127(99)00103-6
  5. Foyer, C. H., P. Descourvieres and K. J. Kunert. 1994. Protection against oxygen radicals an important defense mechanism studied in transgenic plants. Plant Cell Environ. 17, 507-523 https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  6. Gabara, B., M. Sklodowska, A. Wyrwicka, S. Glinska and M. Gapinska. 2003. Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. leaves sprayed with acid rain. Plant Sci. 164, 507-516 https://doi.org/10.1016/S0168-9452(02)00447-8
  7. Haines, B., M. Stefani and F. Hendrix. 1980. Acid rain: threshold of leaf damage in eight plant species from a southern Appalachian forest succession. Water, Air and Soil, Pollut. 114, 403-407
  8. Heath, R. J. and J. Packer. 1968. Photoperoxidation in isolated chloroplasts. J. Kinetic and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189-198 https://doi.org/10.1016/0003-9861(68)90654-1
  9. Hossain, M. A., Y. Nakano and K. Asada. 1984. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 25, 385-395
  10. Huh, H. W. and M. K. Huh. 1998. The effect of simulated acid rain on the growth of important crops. J. Kor. Environ. Sci. 7, 123-131
  11. Kim, H. Y., K. Kobayashi, I. Nouchi and T. Yoneyana. 1996. Differential influences of UV-B radiation on antioxidants and related enzymes between rice (Oryza sativa L.) and cucumber (Cucumis sativus L.) leaves. Environ. Sci. 9, 55-63
  12. Law, N. Y., S. A. Charles and B. Halliwell. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of .hydrogen peroxide and paraquat. Biochem. J. 210, 899-903
  13. Lee, J. J., G. E. Neely, S. C. Perrjiean and J. C. Grothaus. 1981. Effects of simulated sulfuric acid rain on yield, growth and foliar injury of several crops. Environ. Exp. Bot. 21, 171-185 https://doi.org/10.1016/0098-8472(81)90024-1
  14. Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthesis. Methods Enzymol. 148, 305-352
  15. Luxmoore, R. J., T. Gizzard and R. H. Strand. 1981. Nutrient translocation in the outer canopy and understory of an eastern deciduous forest. For. Sic. 27, 505-518
  16. Nouchi, I. 1991. Acid rain and plant damage. J. Agr. Met. 47, 165-175 https://doi.org/10.2480/agrmet.47.165
  17. Pylypec, B. and R. E. Redmann. 1984. Acid-buffering capacity of foliage from boreal forest species. Can. J. Bot. 62, 2650-2653 https://doi.org/10.1139/b84-360
  18. Schoner, S. and G. H. Krause. 1990. Protective systems against active oxygen species in spinach: response to cold accumulation in excess light. Planta 180, 383-389 https://doi.org/10.1007/BF01160394
  19. Singh, A. and M. Agrawal. 1996. Response of two cultivars of Triticum aestivum J. to simulated acid rain. Environ. Pollut. 91, 161-167 https://doi.org/10.1016/0269-7491(95)00056-9
  20. Tanaka, K. and K. Sugahara. 1980. Role of superoxide dismutase in defense against $SO_{2}$ toxicity and an increase in superoxide dismutase activity with $SO_{2}$ fumigation. Plant Cell Physiol. 21, 601-611
  21. Tanaka, K., N. Kondo and K. Sugahara. 1982. Accumulation of hydrogen peroxide in chloroplasts of $SO_{2}$ fumigated spinach leaves. Plant Cell Physiol. 23, 999-1007
  22. Teramura, A. H., J. H. Ziska and A. E. Sztein. 1991. Changes in growth and photosynthetic capadty of rice with increased UV-B radiation. Physiol. Plant. 83, 373-380 https://doi.org/10.1111/j.1399-3054.1991.tb00108.x
  23. Velikova, V., J. Yordanov and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants; Protective role of exogenous polyamine. Plant Sci. 151, 59-66 https://doi.org/10.1016/S0168-9452(99)00197-1

Cited by

  1. Effect of Simulated Acid Rain on Fatty Acid Composition and Antioxidant System in Garden Balsam(Impatiens balsamina L.) vol.31, pp.2, 2011, https://doi.org/10.5660/KJWS.2011.31.2.152