Myocardial Perfusion after Transmyocardial Mechanical Revascularization in Rat Heart Transplant Model, Acute Model

백서 동종이식 심장모델에서 기계적 경심근 혈관재형성의 심근 혈류 개선 효과 : 급성기 모델

  • Shinn Sung Ho (Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan) ;
  • Chung Won Sand (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Hanyang University) ;
  • Kang Jung Ho (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Hanyang University) ;
  • Jeon Yang-Bin (Department of Thoracic and Cardiovascular Surgery, Gachon Medical School, Gil Heart Center)
  • 신성호 (울산대학교 서울아산병원 흉부외과) ;
  • 정원상 (한양대학교 의과대학 흉부외과학교실) ;
  • 강정호 (한양대학교 의과대학 흉부외과학교실) ;
  • 전양빈 (가천의과대학교 길병원 흉부외과학교실)
  • Published : 2005.07.01

Abstract

Transmyocardial revascularization (TMR) in end stage ischemic heart disease results in variable clinical responses. We investigated the acute effect of early reperfusion and the angiogenesis after formation of the transmyocardial channel in a transplanted rat heart model with acute myocardial infarction. Material and Method: In the 30 transplanted hearts we induced acute myocardial infarction by ligating the proximal left coronary artery and inserted a porous 22G intravenous cannula into the left ventricle. After ten minutes of reperfusion, we removed the cannula. At every stage, we recorded the heart rate, QRS size, and left coronary arterial blood flow using the electrocardiogram and Doppler. One week later the rats were sacrificed and evaluated for the patency of intramyocardial channels and the angiogenesis. Result: The heart rates after ligation and after cannula insertion were $239.1\pm61.7,\;235.8\pm58.0bpm$ respectively, and they were statistically significantly slower than that of before ligation, $277.6\pm40.3bpm\;(p=0.017,\;p=0.007\;respectively)$. QRS sizes before ligation, after ligation, and after cannula insertion were $3.6\pm3.3mm,\;2.8\pm3.3 mm,\;and\;2.4\pm2.2mm,$respectively, and there was no significant difference in the three groups. Doppler findings after ligation showed that average peak and mean values of coronary perfusion were significantly decreased from $2.11\pm0.17kHz,\;1.25\pm0.22kHz\;to\;0.83\pm0.15kHz,\;0.38\pm0.11kHz$(p<0.05 respectively). After insertion of the porous cannula, the average peak and mean values of coronary perfusion were $0.61\pm0.05kHz\;and\;0.33\pm0.05 kHz$ respectively, but there was no statistically significant change compared to values after ligation. In all cases except one, pathologic findings showed no patent channels in the acute stage, however, one case showed the angiogenesis. Conclusion: We confirmed that TMR in a rat heart transplant model did not show blood flow through the channel in the acute stage. However, reperfusion effect in some cases had a potential for angiogenesis.

말기 허혈성 심질환 환자에서의 경심근 혈관재형성(Transmyocardial revascularization)은 다양한 임상 결과를 보인다. 저자는 백서의 동종 이식 심장 급성 심근 경색 모델에서 다공 정맥 캐뉼라를 이용해 심실-심근간 통로를 개통하여 초기 심근 재관류 효과와 혈관신생에 대해 알아보고자 하였다. 대상 및 방법: 총 30마리의 심장 이식 백서를 대상으로 이식심장의 좌관상동맥 근부를 결찰하여 심근경색을 유발하고, 측면에 구멍을 뚫은 22G정맥 캐뉼라를 좌심실 내로 삽입하여 10분간 관류를 시킨 후 제거하였다. 각 단계에서 도플러 초음파와 심전도를 측정하여 좌관상동맥의 혈류와 심박동수, QRS 크기를 비교하였다. 이후 1주일간 관찰하여 안락사시킨 후 이식 심장에서 심근 내 통로의 개통성과 혈관신생을 관찰하였다. 걸과: 좌관상동맥 결찰 후($239.1\pm61.7$회/분)와 경심근 다공 캐뉼라 삽입후($235.8\pm58.0$회/분) 심박동수는 결찰 전($277.6\pm40.3$회/분)보다 느렸다(각각 P=0.017, 0.007). QRS 크기는 결찰 전 $3.6\pm3.3mm$, 결찰 후 $2.8\pm3.3m$, 다공 캐뉼라 삽입 후 $2.4\pm2.2mm$로 세 군간에 차이가 없었다. 도플러 초음파 검사에서도 좌관상동맥 혈류량의 평균 최고치와 평균 중간치가 결찰전 $2.11\pm0.17kHz$$1.25\pm0.22kHz$에서 결찰 후 $0.83\pm0.15 kHz$$0.38\pm0.11kHz$로 의미 있게 감소하였고 (p<0.05), 캐뉼라 삽입후$0.61\pm0.05kHz$$0.33\pm0.05 kHz$로 결찰 후 값과 비교할 때 큰 차이가 없었다. Hematoxylin-eosin, Masson-Trichrome 염색을 이용한 병리학적 검사상 1예를 제외하고 초기 통로의 개통성을 확인할 수 없었으나, 1예에서 혈관 증식이 관찰되었다. 걸론: 결론적으로 동종이식 심장의 급성 심근경색 모델에서 경심근 혈관재형성은 초기에 경심근 통로를 통한 혈류와 관류 효과를 유발하지 않았지만 일부에서 혈관신생이 일어나 장기적으로 혈관신생의 가능성을 확인할 수 있었다.

Keywords

References

  1. Huikeshoven M, Beek JF, van der Sloot JA, Tukkie R, van der Meulen J, van Gemert MJ. 35 years of experimental research in transmyocardial revascularization: what have we learned? Ann Thorac Surg 2002;74:956-70 https://doi.org/10.1016/S0003-4975(01)03547-0
  2. Frazier OH, Cooley DA, Kadipasaoglu KA, et al. Myocardial revascularization with laser. Preliminary findings. Circulation 1995;92(9 Suppl):II58-65 https://doi.org/10.1161/01.CIR.92.9.58
  3. Mirhoseini M, Shelgikar S, Cayton MM. Transmyocardial laser revascularization: a review. J Clin Laser Med Surg 1993;11:15-9
  4. Horvath KA, Smith WJ, Laurence RG, Schoen FJ, Appleyard RF, Cohn LH. Recovery and viability of an acute myocardial infarct after transmyocardial laser revascularization. J Am Coll Cardiol 1995;25:258-63 https://doi.org/10.1016/0735-1097(94)00410-R
  5. Pelletier MP, Giaid A, Sivaraman S, et al. Angiogenesis and growth factor expression in a model of transmyocardial revascularization. Ann Thorac Surg 1998;66:12-8 https://doi.org/10.1016/S0003-4975(98)00388-9
  6. Kwong KF, Kanellopoulos GK, Nickols JC, et al. Transmyocardial laser treatment denervates canine myocardium. J Thorac Cardiovasc Surg 1997;114:883-9; discussion 889-90 https://doi.org/10.1016/S0022-5223(97)70001-1
  7. Whittaker P, Kloner RA, Przyklenk K. Laser-mediated transmural myocardial channels do not salvage acutely ischemic myocardium. J Am Coll Cardiol 1993;22:302-9 https://doi.org/10.1016/0735-1097(93)90848-U
  8. Fisher PE, Khomoto T, DeRosa CM, Spotnitz HM, Smith CR, Burkhoff D. Histologic analysis of transmyocardial channels: comparison of $CO_2$and holmium:YAG lasers. Ann Thorac Surg 1997;64:466-72 https://doi.org/10.1016/S0003-4975(97)00519-5
  9. Cooley DA, Frazier OH, Kadipasaoglu KA, Pehlivanoglu S, Shannon RL, Angelini P. Transmyocardial laser revascularization. Anatomic evidence of long-term channel patency. Tex Heart Inst J 1994;21:220-4
  10. Sen PK, Udwadia TE, Kinare SG, Parulkar GB. Transmyocardial acupuncture: A New Approach to Myocardial Revascularization. J Thorac Cardiovasc Surg 1965;50:181-9
  11. Kohmoto T, Argenziano M, Yamamoto N, et al. Assessment of transmyocardial perfusion in alligator hearts. Circulation 1997;95:1585-91 https://doi.org/10.1161/01.CIR.95.6.1585
  12. Chiotti K, Choo SJ, Martin SL, et al. Activation of myocardial angiogenesis and upregulation of fibroblast growth factor-2 in transmyocardial-revascularization-treated mice. Coron Artery Dis 2000;11:537-44 https://doi.org/10.1097/00019501-200010000-00004
  13. Whittaker P, Rakusan K, Kloner RA. Transmural channels can protect ischemic tissue. Assessment of long-term myocardial response to laser-and needle-made channels. Circulation 1996;93:143-52 https://doi.org/10.1161/01.CIR.93.1.143
  14. Horvath KA. Clinical studies of TMR with the $CO_2$ laser. J Clin Laser Med Surg 1997;15:281-5
  15. Mirhoseini M, Cayton MM. Revascularization of the heart by laser. J Microsurg 1981;2:253-60 https://doi.org/10.1002/micr.1920020406
  16. Hardy RI, Bove KE, James FW, Kaplan S, Goldman L. A histologic study of laser-induced transmyocardial channels. Lasers Surg Med 1987;6:563-73 https://doi.org/10.1002/lsm.1900060617
  17. Kohmoto T, Fisher PE, Gu A, et al. Does blood flow through holmium:YAG transmyocardial laser channels? Ann Thorac Surg 1996;61:861-8 https://doi.org/10.1016/0003-4975(95)01134-X
  18. Whittaker P, Spariosu K, Ho ZZ. Success of transmyocardial laser revascularization is determined by the amount and organization of scar tissue produced in response to initial injury: results of ultraviolet laser treatment. Lasers Surg Med 1999;24:253-60 https://doi.org/10.1002/(SICI)1096-9101(1999)24:4<253::AID-LSM1>3.0.CO;2-9
  19. Horvath KA, Chiu E, Maun DC, et al. Up-regulation of vascular endothelial growth factor mRNA and angiogenesis after transmyocardial laser revascularization. Ann Thorac Surg 1999;68:825-9 https://doi.org/10.1016/S0003-4975(99)00842-5
  20. Li W, Chiba Y, Kimura T, et al. Transmyocardial laser revascularization induced angiogenesis correlated with the expression of matrix metalloproteinases and platelet-derived endothelial cell growth factor. Eur J Cardiothorac Surg 2001;19:156-63 https://doi.org/10.1016/S1010-7940(00)00649-7
  21. Mueller XM, Tevaearai HT, Genton CY, Chaubert P, von Segesser LK. Are there vascular density gradients along myocardial laser channels? Ann Thorac Surg 1999;68:125- 9; discussion 130 https://doi.org/10.1016/S0003-4975(99)00461-0
  22. Mueller XM, Tevaearai HT, Genton CY, Chaubert P, von Segesser LK. Improved neoangiogenesis in transmyocardial laser revascularization combined with angiogenic adjunct in a pig model. Clin Sci (Lond) 2000;99:535-40 https://doi.org/10.1042/CS20000112
  23. Chu VF, Giaid A, Kuang JQ, et al. Thoracic surgery directors association award. Angiogenesis in transmyocardial revascularization: comparison of laser versus mechanical punctures. Ann Thorac Surg 1999;68:301-7; discussion 307-8 https://doi.org/10.1016/S0003-4975(99)00680-3
  24. Kohmoto T, DeRosa CM, Yamamoto N, et al. Evidence of vascular growth associated with laser treatment of normal canine myocardium. Ann Thorac Surg 1998;65:1360-7 https://doi.org/10.1016/S0003-4975(98)00236-7
  25. Lu CH, Yu TJ, Lai ST. Transmyocardial holmium-YAG laser channels in an animal model: a preliminary morphologic and histologic study. Zhonghua Yi Xue Za Zhi (Taipei) 1999;62:614-8
  26. Hughes GC, Kypson AP, Annex BH, et al. Induction of angiogenesis after TMR: a comparison of holmium: YAG, CO2, and excimer lasers. Ann Thorac Surg 2000;70:504-9 https://doi.org/10.1016/S0003-4975(00)01569-1
  27. Barber MJ, Mueller TM, Davies BG, Zipes DP. Phenol topically applied to canine left ventricular epicardium interrupts sympathetic but not vagal afferents. Circ Res 1984;55:532-44 https://doi.org/10.1161/01.RES.55.4.532
  28. Opitz CF, Finn PV, Pfeffer MA, Mitchell GF, Pfeffer JM. Effects of reperfusion on arrhythmias and death after coronary artery occlusion in the rat: increased electrical stability independent of myocardial salvage. J Am Coll Cardiol 1998;32:261-7 https://doi.org/10.1016/S0735-1097(98)00173-9