한국재래 닭 고환 지지세포와 간질세포의 부화 후 발달에 관한 연구

Studies on the Post-hatching Development of Sertoli and Leydig Cells in the Testis of Korean Native Chickens

  • 태현진 (전북대학교 생체안전성연구소, 수의과대학 해부학교실) ;
  • 장병귀 (축산연구소 가금과) ;
  • 최철환 (축산연구소 가금과) ;
  • 박영재 (전북대학교 생체안전성연구소, 수의과대학 해부학교실) ;
  • 양홍현 (전북대학교 생체안전성연구소, 수의과대학 해부학교실) ;
  • 김인식 (전북대학교 생체안전성연구소, 수의과대학 해부학교실)
  • Tae H. J. (Bio-Safety Research Institute, Department ol Veterinary Anatomy, College of Veterinary Medicine, Chonbuk National University) ;
  • Jang B. G. (Poultry Division National Livestock Research Institute) ;
  • Choi C. H. (Poultry Division National Livestock Research Institute) ;
  • Park Y. J. (Bio-Safety Research Institute, Department ol Veterinary Anatomy, College of Veterinary Medicine, Chonbuk National University) ;
  • Yang H. H. (Bio-Safety Research Institute, Department ol Veterinary Anatomy, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim I. S. (Bio-Safety Research Institute, Department ol Veterinary Anatomy, College of Veterinary Medicine, Chonbuk National University)
  • 발행 : 2005.06.01

초록

한국재래 닭에서 고환 지지세포와 간질세포의 발달유형을 명확하게 이해하기 위하여 부화 후 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 28, 32, 44, 52 및 64주령(n:13마리/일령)의 한국재래 닭을 이용하여 이 연구를 수행하였다. 한국재래 닭의 고환은 $2.5\%$ glutaraldehyde를 이용하여 전신 관류 고정하고 조직 처리과정을 거쳐 Epon-araldite에 포매하였다. 초박절편기를 사용하여 $1{\mu}m$로 절편한 다음 methylene blue로 염색하여 형태 계측을 하였다. 부화후 1주령의 한국재래 닭 고환의 평균용적은 $0.148\;cm^3$이었고 점진적으로 증가하여 21주령에는 $3.93\;cm^3$이고 21주령부터 64주령까지는 변화가 없었다. 곱슬정세관의 용적 치밀도는 1주령에 $32.6\%$이었으나 점차적으로 증가하여 64주령에서는 92.89이었다. 1주령의 한국재래 닭에서 고환 간질조직은 고환실질의 $67.4\%$를 나타내었고 이러한 비율은 성장하는 동안에 점차적으로 감소하여 64주령에 $7.11\%$를 나타내었다. 간질세포의 용적 치밀도는 1주령부터 14주령까지 단계적으로 감소하였고 이후에는 변화가 관찰되지 않았다. 이와는 다르게 지지세포의 용적 치밀도는 1주령에 $3.4\%$를 차지하고 있었고 점진적으로 증가하여 18주령에 $10.79\%$이었으며 이후에는 변화가 없었다. 고환조직내 지지세포와 간질세포의 절대용적은 일령에 1주령부터 24주령까지는 유의성 있게 증가하였으나 24주령부터 64주령까지는 차이가 없었다. 고환조직당 간질세포의 총 숫자는 1주령부터 21주령까지는 유의성 있게 증가하였으나 그 이후에는 변화가 없었고 지지세포의 숫자는 1주령부터 14주령까지 점진적으로 증가하였고 그 이후의 주령에서는 변화가 없었다.

Morphometric changes in testicular Sertoli and Leydig cells from hatching to adulthood were studied using Korean native chickens of 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 24, 28, 32, 44, 52 and 64 weeks (n=13 chickens per group) of age. The objective of this study was to understand the developmental phase of the Sertoli and Leydig cells with age. Testis of chickens was fixed by whole body perfusion using a fixative containing $2.5\%$ glutaraldehyde in cacodylate buffer, processed and embedded in Epon-araldite. Using 1 Um sections stained with methylene blue-azure II, qualitative and quantitative (stereological) morphological studies were performed. The average volume of a testis of 1 week old Korean native chickens was determined as $0.148\;cm^3$ and the parameter increased linearly from 1 week to 21 weeks days $(28.86\;cm^3)$, and did not change from 21 weeks to 64 weeks. The volume density of the seminiferous tubules increased with age from $32.6\%$ at week 1 to $92.89\%$ at week 64. The volume density of the interstitium represents $67.4\%$ of the testicular parenchyma at week 1. This proportion progressively diminished during development to reach a value of $7.11\%$ at week 64. The volume density of the Leydig cells decreased almost linearly from 1 week $(4.9\%)$ to 14 weeks $(1.7\%)$ and remained unchanged thereafter. In contrast, the Sertoli cells occupied a volume density of $3.4\%$ at week 1, increased progressively up to 18 weeks of age $(10.79\%)$ and remained unchanged thereafter. The absolute volume of the Leydig and Sertoli cells per testis increased significantly from week 1 to week 21 but did not change significantly from week 24 to week 64. The number of Leydig cells per testis increased almost linearly from 1 week to 21 weeks, remained high and unchanged with advancing age. The number of Sertoli cells per testis increased gradually with age from 1 week to 14 weeks and remained unchanged thereafter.

키워드

참고문헌

  1. Aire TA 1973 Development of puberty in Nigerian and White Leghorn cockerels. Poult Sci 52: 1765-1769 https://doi.org/10.3382/ps.0521765
  2. Aire TA 1997 The structure of the interstitial tissue of the active and resting avian testis. J Vet Res 64:291-299
  3. Ariyaratne HBS, Chamindrani Mendis-Handagarna SML 2000 Changes in the testis interstitium of sprague dawley rats from birth to sexual maturity. BioI Reprod 62:680-690 https://doi.org/10.1095/biolreprod62.3.680
  4. Baker PJ, O'Shaughnessy PJ 2001 Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction 122: 227-234 https://doi.org/10.1530/rep.0.1220227
  5. Bennett CH 1967 Relation between size and age of the gonads in the fowl from hatching date to sexual maturity. Poult Sci 26:99-104
  6. Berndtson WE, Igboeli G, Pickett BW 1987 Relationship of absolute number of Serto1i cells to testicular size and spermatogenesis in young beef bulls. J Anim Sci 64:241-246 https://doi.org/10.2527/jas1987.641241x
  7. Bortolussi M, Zanchetta R, Belvedere P 1990 Sertoli and Leydig cell numbers and gonadotropin receptors in rat testis from birth to puberty. Cell Tissue Res 260: 185-191 https://doi.org/10.1007/BF00297504
  8. Brillard JP 1986 elated variations in seminiferous tubule dimensions and germinal and Sertoli cell numbers in guinea-fowl raised under a 14L: IOD photoperiod. Poult Sci 65:369-374 https://doi.org/10.3382/ps.0650369
  9. Castro AC, Bemdtson WE, Cardoso FM 2002 Plasma and testicular testosterone levels, volume density and number of Leydig cells and spermatogenic efficiency of rabbits. Braz J Med BioI Res 35:493-498 https://doi.org/10.1590/S0100-879X2002000400014
  10. Chubb BB 1992 Genes regulating testis size. BioI Reprod 47: 29-36 https://doi.org/10.1095/biolreprod47.1.29
  11. Ewing LL, Zirkin BR 1983 Leydig cell structure and steroidogenic ftmction. Recent Prog Horm Res 39:599-632
  12. Floderus S 1944 Untersuchunger uber den bau der menschlichen hypophyse mit besonderer berucksichtigung der quantitativen mikromorphologischen verhaltnisse. Acta Pathol Microbiol Scand 5:1-276 https://doi.org/10.1111/j.1600-0463.1928.tb05307.x
  13. Franca LR, Silva VA, Chiarini-Garcia H 2000 Cell proliferation and hormonal changes during postnatal development of the testis in the pig. BioI Reprod 63:1629-1636 https://doi.org/10.1095/biolreprod63.6.1629
  14. Gondos B. 1980 Development and differentiation of the testis and male reproductive tract. Pages 3-20 In : Testicular Development, Structure and Function, Raven press, New York
  15. Johnson L, Neaves WB 1981 Age-related changes in the Leydig cell population, seminiferous. tubules, and sperm production in stallions. BioI Reprod 24:703-712 https://doi.org/10.1095/biolreprod24.3.703
  16. Johnson L, Thomson DL 1986 Seasonal variation in the total volume of Leydig cells in stallions is explained by variation in cell number rather than cell size. BioI Reprod 35: 971-979 https://doi.org/10.1095/biolreprod35.4.971
  17. Johnson L, Varner DD, Tatum ME 1991 Season but not age affects Sertoli cell number in adult stallions. Biol Reprod 45:404-410 https://doi.org/10.1095/biolreprod45.3.404
  18. Kalmer GAR 1969 Developmental changes in the reproductive organs of the rriale Fayomi fowl. Poult Sci 38:775-781
  19. Kerr JB 1988 A light microscopic and morphometric analysis of the Sertoli cell during the spermatogenic cycle of the rat. Anat Embryol 177:341-348 https://doi.org/10.1007/BF00315842
  20. Kim IS, Ariyaratne HBS, Mendis-Handagama SMLC 2002 Changes in the testis interstitium of Brown Norway rats with aging and effects of luteinizing and thyroid hormones on the aged testes in enhancing the steroidogenic potential. Biol Reprod 66:1359-1366 https://doi.org/10.1095/biolreprod66.5.1359
  21. McCoard SA, Lunstra DD, Wise TH, Ford JJ 2001 Specific staining of Sertoli cell nuclei and evaluation of Sertoli cell number and proliferative activity in Meishan and White Composite boars during the neonatal period. Biol Reprod 64:689-695 https://doi.org/10.1095/biolreprod64.2.689
  22. Mendis-Handagama SMLC, Risbridger GP, de Krester DM 1987 Morphometric analysis of the components of the neonatal and the adult rat testis interstitium. Int J Androl 110:525-534
  23. Mori H, Christensen AK 1980 Morphometric analysis of Leydig cells in the normal rat testis. J Cell Biol 84:340-354 https://doi.org/10.1083/jcb.84.2.340
  24. Parker JE, McKenzie FF, Kempster HL 1972 Development of the testis and combs of White Leghorn and New Hampshire cockerels. Poult Sci 21 :35-44
  25. Payne AH, Youngblood GL 1995 Regulation of expression of steroidogenic enzymes in Leydig cells. Biol Reprod 52:217-225 https://doi.org/10.1095/biolreprod52.2.217
  26. Rey RA, Campo SM, Bedecarras C 1993 Histologic, morphometricand functional study of the seminiferous tubules of the Cebus monkey from birth to the end of puberty. J Clin Endocrinol Metab 76:1325-132
  27. Russell LL, Ren HP, Sinha-Hikim I 1990 A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the Sertoli cell. Am J Anat 188:21-30 https://doi.org/10.1002/aja.1001880104
  28. Saez, JM 1994 Leydig cells: endocrine, paracrine, and autocrine regulation. Endocrine Rev 15: 576-626
  29. Sharp PJ, Culbert J, Wells JW 1977 Variations in stores and plasma concentrations of androgens and luteinizing hormone during sexual development in the cockerel. J Endocr 74:467-476 https://doi.org/10.1677/joe.0.0740467
  30. Sharpe RM, Walker M, Millar MR, Atanassova N 2000 Effect of neonatal gonadotropin releasing hormone antagonist administration on Sertoli cell number and testicular development in the marmoset: comparison with the rat. Biol Reprod 62: 1685-1693 https://doi.org/10.1095/biolreprod62.6.1685
  31. Sinha-Hikim AP, Amador AG, Bartke A, Russell LD 1989 Structure/function relationship in active and inactive hamster Leydig cells : A correlative morphometric and endocrine study. Endocrinology 125:1844-1856 https://doi.org/10.1210/endo-125-4-1844
  32. Sinha-Hikim AP, Bartke A, Russell LD 1988 Morphometric studies on hamster testes in gonadally active and inactive states: Light microscope findings. BioI Reprod 39:1225-1237 https://doi.org/10.1095/biolreprod39.5.1225
  33. Weibel ER 1969 Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol 26:235-301 https://doi.org/10.1016/S0074-7696(08)61637-X
  34. Wrobel KH 1990 The postnatal development of the bovine Leydig cell population. Reprod Dom Anim 25:51-60 https://doi.org/10.1111/j.1439-0531.1990.tb00681.x