Abstract
Obstructive Sleep Apnea (OSA) is a representative symptom of sleep disorder caused by the obstruction of upper airway. Because OSA causes not only excessive daytime sleepiness and fatigue, hypertension and arrhythmia but also cardiac arrest and sudden death during sleep in the severe case, it is very important to detect the occurrence and the frequency of OSA. OSA is usually diagnosed through the laboratory-based Polysomnography (PSG) which is uncomfortable and expensive. Therefore researches to improve the disadvantages of PSG are needed and studies for the detection of OSA using only one or two parameters are being made as alternatives to PSG. In this paper, we developed an algorithm for the detection of OSA based on Heart Rate Variability (HRV). The proposed method is applied to the ECG data sets provided from PhysioNet which consist of learning set and training set. We extracted features for the detection of OSA such as average and standard deviation of 1 minute R-R interval, power spectrum of R-R interval and S-peak amplitude from data sets. These features are applied to the input of neural network. As a result, we obtained sensitivity of $89.66\%$ and specificity of $95.25\%$. It shows that the features suggested in this study are useful to detect OSA.
폐쇄성 수면무호흡은 수면장애를 나타내는 대표적인 증상으로 주간의 과도한 졸음과 피로, 고혈압, 부정맥 등을 유발할 뿐만 아니라 심한 경우 수면 중 심장마비, 돌연사 등의 결과를 초래할 수 있으므로 그의 발생 여부 및 빈도를 검출하는 것은 매우 중요하다. 이를 위해 사용되고 있는 수면다원검사는 여러 가지 생체신호를 함께 측정하므로 불편하고 비용이 많이 드는 단점이 있다. 이러한 단점을 보완하기 위해 적은 수의 생체신호를 사용한 폐쇄성 수면무호흡 검출에 관한 연구가 필요하다. 본 논문에서는 폐쇄성 수면무호흡을 검출하기 위한 최소한의 생체신호로서 심전도 신호를 이용하였다. PhysioNet에서 제공하는 수면무호흡 환자의 심전도 데이터로부터 1분간의 R-R 간격의 평균과 표준편차 그리고 R-R 간격과 S점 크기의 power spectrum 등을 계산하였고, 이를 신경망에 적용함으로써 폐쇄성 수면무호흡 검출 알고리즘을 개발하였다. 개발된 알고리즘에 심전도 신호를 적용하여 검출 성능을 평가한 결과, 평균 $89.66\%$의 sensitivity와 $95.25\%$의 specificity를 얻었으며 이를 통해 본 연구에서 제안한 검출파라미터들의 유용성을 확인하였다.