A Prony Method Based on Discrete Fourier Transform for Estimation- of Oscillation Mode in Power Systems

이산푸리에변환에 기초한 Prony 법과 전력계통의 진동모드 추정

  • 남해곤 (전남대 공대 전기전자공학과) ;
  • 심관식 (전남대 공업기술연구소)
  • Published : 2005.06.01

Abstract

This paper describes an improved Prony method in its speed, accuracy and reliability by efficiently determining the optimal sampling interval with use of DFT (discrete Fourier transformation). In the Prony method the computation time is dominated by the size of the linear prediction matrix, which is given by the number of data times the modeling order The size of the matrix in a general Prony method becomes large because of large number of data and so does the computation time. It is found that the Prony method produces satisfactory results when SNR is greater than three. The maximum sampling interval resulting minimum computation time is determined using the fact that the spectrum in DFT is inversely proportional to sampling interval. Also the process of computing the modes is made efficient by applying Hessenberg method to the companion matrix with complex shift and computing selectively only the dominant modes of interest. The proposed method is tested against the 2003 KEPCO system and found to be efficient and reliable. The proposed method may play a key role in monitoring in real time low frequency oscillations of power systems .

Keywords

References

  1. Powertech, Small Signal Stability Tools (SSAT), User manual, Version 1.2, 2001
  2. H. K. Nam, S. G. Song, K. S. Shim, D. J. Kim, Y. H. Moon, C. J. Moon,Hessenberg Method for Small Signal Stability Analysis of Large Scale Power Systems, IEEE PES WM2000, Vol. 2, pp.872-876, Jan. 2000 https://doi.org/10.1109/PESW.2000.850041
  3. J. F. Hauer, C. J. Demeure, L. L. Scharf, 'Initial Results in Prony Analysis of Power System Response Signals,' IEEE Trans. on Power Systems, vol. 5, pp.80-89, Feb. 1990 https://doi.org/10.1109/59.49090
  4. J. F. Hauer, 'Application of Prony Analysis to The Determination of Modal Content and Equivalent Models for Measured Power System Response,' IEEE Trans. on Power Systems, vol.6, pp.1062-1068, Aug. 1991 https://doi.org/10.1109/59.119247
  5. D. J. Trudnowski, J. R. Smith, T. A. Short, D. A. Piene, 'An Application of Prony Method in PSS Design for Multimachine Systems,' IEEE Trans. on Power Systems, vol. 6, pp.118-126, 1991 https://doi.org/10.1109/59.131054
  6. M. K. Donnelly, J. R. Smith, R. M. Johnson, J. F. Hauer, R. W. Brush, R. Adapa, 'Control of a Dynamic Brake to Reduce Turbine-Generator Shaft Transient Torques,' IEEE Trans. on Power Systems, vol. 8, pp.67-73, Feb. 1993 https://doi.org/10.1109/59.221250
  7. J. H. Hong, J. K. Park, 'A Time-domain Approach to Transmission Network Equivalents via Prony Analysis for Electromagnetic Transients Analysis,' IEEE Trans. on Power Systems, vol. 10, pp. 1789-1796, Nov. 1995 https://doi.org/10.1109/59.476042
  8. K. E. Bollinger, W. E. Norum, 'Time Series Identification of Interarea and Local Generator Resonant Modes,' IEEE Trans. on Power Systems, vol. 10, pp.273-279, Feb. 1995 https://doi.org/10.1109/59.373950
  9. J. W. Pierre, D. J. Trudnowski, M. K. Donnelly, 'Initial Results In Electromechanical Mode Identification from Ambient Data,' IEEE Trans. on Power Systems, vol. 12, pp.1245-1251. Aug. 1997 https://doi.org/10.1109/59.630467
  10. D. J. Trudnowski, J. M. Johnson, J. F. Hauer, 'Making Prony Analysis More Accurate using Multiple Signals,' IEEE Trans. on Power Systems, vol. 14, pp.226-231, Feb. 1999 https://doi.org/10.1109/59.744537
  11. A.B. Leirbukt, J.H. Chow, J.J. Sanchez-Gasca, and E.V. Larsen, 'Damping Control Design Based on Time-domain Identified Models,' IEEE Trans. on Power Systems, vol. 14, pp. 172-178, Feb. 1999 https://doi.org/10.1109/59.744511
  12. S. R. Nam, S. H. Kang, J. K. Park,' An Analytic Method for Measuring Accurate Fundamental Frequency Components,' IEEE Trans. on Power Delivery, Vol. 17, pp. 405-411, Apr. 2002 https://doi.org/10.1109/61.997907
  13. R. W. Wies, J. W. Pierre, D. J. Trudnowski, 'Use of ARMA Block Processing for Estimating Stationary Low-frequency Electromechanical Modes of Power Systems,' IEEE Trans. on Power Systems, Vol. 18, pp.167-173, Feb. 2003 https://doi.org/10.1109/TPWRS.2002.807116
  14. A. Hasanovic, A. Feliachi, N. B. Bhatt, A. G. DeGroff, 'Practical Robust PSS Design through Identification of Low-order Transfer Functions,' IEEE Trans. on Power Systems, vol. 19, pp.1492-1500, Aug. 2004 https://doi.org/10.1109/TPWRS.2004.831679
  15. D. Ruiz-Vega, A. R. Messina, M. Pavella, 'Online Assessment and Control of Transient Oscillations Damping,' IEEE Trans. on Power Systems, vol.19, pp.1038-1047, May 2004 https://doi.org/10.1109/TPWRS.2004.825909
  16. Numerical Recipes In FORTRAN, Cambridge University Press, New York, 1992
  17. W. L. Briggs, V. E. Henson, The DFT, An Owner's Manual for the Discrete Fourier Transform, SIAM, Philadelphia, 1995
  18. L. L. Scharf, Statistical Signal Processing Detection, Estimation, and Time Series Analysis, Addison-Wesley Publishing Company, New York, 1991
  19. K. B. Howell, Principles of Fourier Analysis, Chapman & Hall/CRC, New York, 2001
  20. P. Kundur, Power System Stability and Control, McGraw-Hill, Inc., New York, 1994