DOI QR코드

DOI QR Code

SELF-SIMILAR SOLUTIONS OF ADVECTION-DOMINATED ACCRETION FLOWS REVISITED

  • Chang, Heon-Young (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Published : 2005.06.01

Abstract

A model of advection-dominated accretion flows has been highlighted in the last decade. Most of calculations are based on self-similar solutions of equations governing the accreting flows. We revisit self-similar solutions of the simplest form of advection-dominated accretion flows. We explore the parameter space thoroughly and seek another category of self-similar solutions. In this study we allow the parameter f less than zero, which denotes the fraction of energy transported through advection. We have found followings: 1. For f > 0, in real ADAF solutions the ratio of specific heats ${\gamma}$ satisfies 1 < ${\gamma}$ < 5/3 for O ${\leq}$ f ${\leq}$ 1. On the other hands, in wind solutions a rotating disk does not exist. 2. For f < 0, in real ADAF solutions with ${\epsilon}$ greater than zero ${\gamma}$ requires rather exotic range, that is, ${\gamma}$ < 1 or ${\gamma}$ > 5/3. When -5/2 < ${\epsilon}$' < 0, however, allowable ${\gamma}$ can be found in ${\gamma}$ < 5/3, in which case 4{\Omega}_0$,_ is imaginary. 3. For a negative $u_0$,+ with f > 0, solutions are only allowed with exotic ${\gamma}$, that is, 1 < ${\gamma}$ or ${\gamma}$ > (5f/2-5/3)/(5f/2-1)when O < f < 2/5, (5f/2-5/3)/(5f/2-1) < ${\gamma}$ < 1 when f > 2/5. Since ${\epsilon}$' is negative, 4{\Omega}_0$,+ is again an imaginary quantity. For a negative $u_0$,+ with f < 0, ${\gamma}$ is allowed in 1 < 7 < (5|f|/2 + 5/3)/(5|f|/2 + 1). We briefly discuss physical implications of what we have found.

Keywords

References

  1. Abramowicz, M. A., Czerny, B., Lasota, J. P., & Szuszkiewicz, E. 1988, ApJ, 332, 646 https://doi.org/10.1086/166683
  2. Abramowicz, M. A., Igumenshchev, I. V., Quataert, E., & Narayan, R. 2002, ApJ, 565, 1101 https://doi.org/10.1086/324717
  3. Beloborodov, A. M., & Illarionov, A. F. 2001, MNRAS, 323, 167 https://doi.org/10.1046/j.1365-8711.2001.04133.x
  4. Bertin, G., & Lodato, G. 1999, A&A, 350, 694
  5. Blandford, R. D., & Begelman, M. C. 1999, MNRAS, 303, L1 https://doi.org/10.1046/j.1365-8711.1999.02182.x
  6. Boss, A. P., & Hartmann, L. W. 2001, ApJ, 562, 842 https://doi.org/10.1086/323855
  7. Brown, G. E., Lee, C.-H., Wijers, R. A. M. J., Lee, H. K., Israelian, G., & Bethe, H. A. 2000, New A, 5, 191 https://doi.org/10.1016/S1384-1076(00)00026-9
  8. Chang, H.-Y. 2001, ApJ, 551, L159 https://doi.org/10.1086/320023
  9. Chang, H.-Y., & Choi, C.-S. 2002, JA&SS, 19, 181
  10. Chang, H.-Y., & Choi, C.-S. 2003, JKAS, 36, 81
  11. Esin, A. A., McClintock, J. E., Drake, J. J., Garcia, M. R., Haswell, C. A., Hynes, R. I., & Muno, M. P. 2001, ApJ, 555, 483 https://doi.org/10.1086/321450
  12. Frank, J., King, A. R., & Raine, D. 2002, Accretion Power in Astrophysics (Cambridge: Cambridge University Press)
  13. Honma, F. 1996, PASJ, 48, 77 https://doi.org/10.1093/pasj/48.1.77
  14. Ichimaru, S. 1977, ApJ, 214, 840 https://doi.org/10.1086/155314
  15. Kenyon, S. J., Yi, I., & Hartmann, L. 1996, ApJ, 462, 439 https://doi.org/10.1086/177163
  16. Kohri, K., & Mineshige, S. 2002, ApJ, 577, 311 https://doi.org/10.1086/342166
  17. Lasota, J.-P., Abramowicz, M. A., Chen, X., Krolik, J., Narayan, R., & Yi, I. 1996, ApJ, 462, L142
  18. Lee, H.-W., & Park, M.-G. 1999, ApJ, 515, L89 https://doi.org/10.1086/311977
  19. Lu, J.-F., Li, S.-L., & Gu, W.-M. 2004, MNRAS, 352, 147 https://doi.org/10.1111/j.1365-2966.2004.07897.x
  20. Medvedev, M. V., & Narayan, R. 2001, ApJ, 554, 1255 https://doi.org/10.1086/321385
  21. Mineshige, S., & Umemura, M. 1996, ApJ, 469, L49 https://doi.org/10.1086/310252
  22. Mineshige, S., & Umemura, M. 1997, ApJ, 480, 167 https://doi.org/10.1086/303964
  23. Mineshige, S., Nakayama, K., & Umemura, M. 1997, PASJ, 49, 439 https://doi.org/10.1093/pasj/49.4.439
  24. Misra, R., & Taam, R. E. 2001, ApJ, 553, 978 https://doi.org/10.1086/320978
  25. Mukhopadhyay, B., & Ghosh, S. 2003, MNRAS, 342, 274 https://doi.org/10.1046/j.1365-8711.2003.06537.x
  26. Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2000, ApJ, 539, 798 https://doi.org/10.1086/309268
  27. Narayan, R., Kato, S., & Honma, F. 1997, ApJ, 476, 49 https://doi.org/10.1086/303591
  28. Narayan, R., & Yi, I. 1994, ApJ, 428, L13 https://doi.org/10.1086/187381
  29. Narayan, R., Yi, I., & Mahadevan, R. 1995, Nature, 374, 623 https://doi.org/10.1038/374623a0
  30. Ogilvie, G. I. 1999, MNRAS, 306, L9 https://doi.org/10.1046/j.1365-8711.1999.02637.x
  31. Park, M. 1995, JKAS, 28, 97
  32. Park, M. 2001, JKAS, 34, 305
  33. Park, M., & Ostriker, J. P. 1999, ApJ, 527, 247 https://doi.org/10.1086/308061
  34. Park, M., & Ostriker, J. P. 2001, ApJ, 549, 100 https://doi.org/10.1086/319042
  35. Quataert, E., & Gruzinov, A. 2000, ApJ, 539, 809 https://doi.org/10.1086/309267
  36. Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
  37. Shapiro, S. L., & Teukolsky, S. A. 1983, Black holes, White Dwarf, and Neutron Stars (New York: John Wiley & Sons)
  38. Stone, J. M., Pringle, J. E., & Begelman, M. C. 1999, MNRAS, 310, 1002 https://doi.org/10.1046/j.1365-8711.1999.03024.x
  39. Suh, K.-W. 1996, JA&SS, 13, 155
  40. Turolla, R., & Dullemond, C. P. 2000, ApJ, 531, L49 https://doi.org/10.1086/312527
  41. Ulvestad, J. S., & Ho, L. C. 2001, ApJ, 562, L133 https://doi.org/10.1086/323439
  42. Wang, J.-M., & Zhou, Y.-Y. 1999, ApJ, 516, 420 https://doi.org/10.1086/307080
  43. Xu, G., & Chen, X. 1997, ApJ, 489, L29 https://doi.org/10.1086/304778
  44. Yuan, F. 2001, MNRAS, 324, 119 https://doi.org/10.1046/j.1365-8711.2001.04258.x

Cited by

  1. Dynamics of hot accretion flow with thermal conduction vol.420, pp.1, 2012, https://doi.org/10.1111/j.1365-2966.2011.20006.x