Biodegradation of PPC-PVL and PVL by Stenotrophomonas maltophilia

Stenotrophomonas maltophilia에 의한 PPC-PVL과 PVL의 분해

  • Park Suk Kyoung (Department of Pharmaceutical Engineering, Inje University) ;
  • Ju Hyun (Department of Pharmaceutical Engineering, Inje University) ;
  • Cho Sung Ki (Department of Pharmaceutical Engineering, Inje University) ;
  • Kim Donguk (Department of Pharmaceutical Engineering, Inje University) ;
  • Oh Kwang Joong (Department of Environmental Engineering, Pusan National University) ;
  • Ree Moonhor (Department of Chemistry, Pohang University of Science and Technology)
  • Published : 2005.02.01

Abstract

Polypropylene carbonate-polyvalerolactone(PPC-PVL) and polyvalerolactone (PVL) produced from exhausted carbon dioxide were degraded by Stenotrophomonas maltophilia separated from soils of waste landfill. The biodegradation was confirmed by FTIR spectrum. PPC-PVL and PVL were degraded $6.6\%,\;12\%$ respectively, at 28 days of pure Stenotrophomonas maltophilia culture.

$CO_2$를 이용하여 제조된 PPC-PVL과 PVL은 부산시 을숙도매립장의 통양에서 분리된 Stenotrophomonas maltophilia에 의해 일부 생분해되었다. 생분해는 FTIR로 확인되었으며, 28일간의 배양에서 PPC-PVL의 중량은 $6.6\%$, PVL은 $12\%$감소하였다.

Keywords

References

  1. Broecker, W. S. (1997), Thermohaline circulation, the achilles heel of our climate system: will man-made $CO_{2}$ upset the current balance?, Science 278, 1582-1586 https://doi.org/10.1126/science.278.5343.1582
  2. Houghton, J. T., B. A. Callander, and S. K. Varney (1992), Climate Change 1992: The supplementary report to the IPCC scientific assessment, Cambridge University, Cambridge
  3. Mergaert, J. and J. Swings (1996), Biodiversity of microorganisms that degrade bacterial and synthetic polyesters, J. Ind. Microbiol. 17, 463-469 https://doi.org/10.1007/BF01574777
  4. Nishida, H. and Y. Tokiwa (1994), Confirmation of poly(1,3-dioxolan- 2-one) degrading microorganisms in environment, Chem. Lett. 421-422
  5. Benedict, C. V., W. J. Cook, P. Jarrett, J. A. Cameron, S. J. Huang, and J. P. Bell (1983), Fungal degradation of polycaprolactones, J. Appl. Polym. Sci. 28, 327-334 https://doi.org/10.1002/app.1983.070280128
  6. Pranamuda, H., Y. Tokiwa, and H. Tanaka (1997), Polylactide degradation by an Amycolatopsis sp., Appl. Environ. Microbiol. 63, 1637-1640
  7. Suyama, T. and Y. Tokiwa (1996), Enzymatic degradation of an aliphatic polycarbonate, poly(tetramethylene carbonate), Enzyme Microb. Technol. 20, 122-126 https://doi.org/10.1016/S0141-0229(96)00084-1
  8. Ulrich, H (1993), Introduction to industrial polymers, 2nd ed., p150, Carl Hanser Verlag, Munich
  9. Ree, M., J. Y. Bae, J. H. Jung, and T. J. Shin (1999), A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene Oxide, J. Polym. Sci., Part A 37, 1863-1876 https://doi.org/10.1002/(SICI)1099-0518(19990615)37:12<1863::AID-POLA16>3.0.CO;2-K
  10. Ree, M., J. Y. Bae, J. H. Jung, T. J. Shin, Y.-T. Hwang, and T. Chang (2000), Copolymerization of carbon dioxide and propylene oxide using various zinc glutarate derivatives as catalysts, Polym. Eng. Sci. 40, 1542-1552 https://doi.org/10.1002/pen.11284
  11. Cacciari, I., D. Lippi, S. Ippoliti, T. Pietrosanti, and W. Pietrosanti (1989), Response to oxygen of diazotrophic Azospirillum brasilenseArthrobacter giacomelloi mixed batch culture, Arch. Microbiol. 152, 111-114 https://doi.org/10.1007/BF00456086
  12. Cacciari, I., P. Quatrini, G. Zirletta, E. Mincione, E. Vinciguerra, P. Lupattelli, and G. Giovannozzi-Sermanni (1993), Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced, Appl. Environ. Microbiol., 59, 3695-3700
  13. Wolf, A., A. Fritze, M. Hagemann, and G. Berg (2002), Stenotrophomonas rhitophila sp. nov. a novel plant-associated bacterium with antifugal properties, Int. J. Syst. Evol. Microbiol. 52, 1937-1944 https://doi.org/10.1099/ijs.0.02135-0