사질토에 설치된 강성현장타설말뚝의 극한수평지지력 예측에 관한 재고

A Review on Ultimate Lateral Capacity Prediction of Rigid Drilled Shafts Installed in Sand

  • Cho Nam Jun (School of Civil & Environ. Eng., Kookmin Univ.) ;
  • Kulhawy F.H (School of Civil & Environ. Eng., Cornell Univ.)
  • 발행 : 2005.03.01

초록

수평하중을 받는 현장타설말뚝을 합리적이고 경제적으로 설계하기 위해서 가장 중요한 것은 지구조 사이의 상호작용을 이해하는 것이다. 그러나 지난 수십년 동안 수평하중을 받는 깊은 기초의 거동에 대한 많은 연구가 있었음에도 불구하고, 문제의 성격상 삼차원적이며 비대칭성으로 인하여 더해지는 지반고유의 비선형성, 불균일성, 복잡성 때문에 극한수평지지력을 공식화하기란 매우 어렵다 본 연구에서는 특정한 현장조건, 기초의 기하학적 특성(D/B비),하중조건 등에 따른 많은 설계 방법들 중에서 가장 널리 알려진 네 가지의 방법(즉, Reese, Broms, Hansen, 그리고 Davidson)에 대해서 재검토하였다. 그리고 본 연구의 밀환으로 행한 모형실험으로 얻어진 하중-변위곡선을 쌍곡선으로 변환하여 해석된 방곡선수평지지력(H$_h$)과 위의 네 가지 방법들에 의하여 예측되는 극한수평지지력(H$_u$)을 비교하였다. Reese와 Hansen의 방법에 의해 구한 H$_u$ / H$_h$비는 각각 0.966와 1.015로서 실험결과와 매우 근사한 극한수평지지력을 제시하고 있다. 반면에 Davidson의 방법에 의해 구한 H$_u$는 에 비하여 $30\%$ 가량 큰 것으로 예측하고 있으나 네 가지 방법중에서 예측 수평지지력값에 대한 C.O.V.가 가장 작다. 네 가지 방법 중 가장 단순한 Broms의 방법은 H$_u$/ H$_h$: 0.896으로서 네 방법 중에서 극한 수평지지력을 가장 작게 평가하는 것으로 나타나지만 극한수평지지력값을 예측함에 있어서 가장 작은 S.D.를 보인다. 결론적으로, 네 가지의 방법 중 그 어 것도 극한수평지지력을 정확하게 예측한다는 면에서 다른 방법보다 더 우수하다고 할 수는 없다. 또한, 계산과정이 얼마나 정교하거나 복잡한 것과는 상관없이 극한수평지지력을 예측하는데 있어서 신뢰도는 또 다론 문제인 것 같다.

An understanding of soil-structure interaction is the key to rational and economical design for laterally loaded drilled shafts. It is very difficult to formulate the ultimate lateral capacity into a general equation because of the inherent soil nonlincarity, nonhomogeneity, and complexity enhanced by the three dimensional and asymmetric nature of the problem though extensive research works on the behavior of deep foundations subjected to lateral loads have been conducted for several decades. This study reviews the four most well known methods (i.e., Reese, Broms, Hansen, and Davidson) among many design methods according to the specific site conditions, the drilled shaft geometric characteristics (D/B ratios), and the loading conditions. And the hyperbolic lateral capacities (H$_h$) interpreted by the hyperbolic transformation of the load-displacement curves obtained from model tests carried out as a part of this research have been compared with the ultimate lateral capacities (Hu) predicted by the four methods. The H$_u$ / H$_h$ ratios from Reese's and Hansen's methods are 0.966 and 1.015, respectively, which shows both the two methods yield results very close to the test results. Whereas the H$_u$ predicted by Davidson's method is larger than H$_h$ by about $30\%$, the C.0.V. of the predicted lateral capacities by Davidson is the smallest among the four. Broms' method, the simplest among the few methods, gives H$_u$ / H$_h$ : 0.896, which estimates the ultimate lateral capacity smaller than the others because some other resisting sources against lateral loading are neglected in this method. But it results in one of the most reliable methods with the smallest S.D. in predicting the ultimate lateral capacity. Conclusively, none of the four can be superior to the others in a sense of the accuracy of predicting the ultimate lateral capacity. Also, regardless of how sophisticated or complicated the calculating procedures are, the reliability in the lateral capacity predictions seems to be a different issue.

키워드

참고문헌

  1. Hirany, A. and Kulhawy, F. H. (1988), 'Conduct and Interpretation of Load Tests on Drilled Shaft Foundations: Detailed Guidelines', Report EL-5915, Vol.1, Electric Power Research Institute, Palo Alto, 374p
  2. Hirany, A. and Kulhawy, F. H. (1989), 'Interpretation of Load Tests on Drilled Shafts-Part 3: Lateral and Moment', Foundation Engineering: Current Principles and Practices (GSP 22), Vol.2, Ed. F.H Kulhawy, ASCE, New York, pp.1160-1172
  3. Broms, B. B. (1964), 'Lateral Resistance of Piles in Cohesionless Soils', Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.90, No.SM3, pp.122-156
  4. Kishida, H. and Nakai, S. (1977), 'Large Deflection of a Single Pile Under Horizontal Load', Proceedings, 9th International Conference on Soil Mechanics and Foundation Engineering, Specialty Session 10, Tokyo, pp.87-92
  5. Hansen, J. B. (1961), 'The Ultimate Resistance of Rigid Piles Against Transversal Forces', Report 12, Danish Geotechnical Institute, Copenhagen, pp.5-9
  6. Reese, L. C, Cox, W. R., and Coop, F. D. (1974), 'Analysis of Laterally Loaded Piles in Sand', Proceedings, 6th Offshore Technology Conference, Vol.2, Houston, pp.473-483
  7. Borden, R. H. and Gabr, M. A. (1987), 'LTBASE: Lateral Pier Analysis Including Base and Slope Effect', Research Report FHWA/NC/86-001, North Carolina state University, Raleigh, 48p
  8. Gabr, M. A. and Borden, R. H. (1989), 'Lateral Response of piers in Sloping Soil Profiles', Proceedings, 12th International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, Rio do Janeiro, 1989, pp.1197-1200
  9. Davidson, H. L., Cass, P. G., Khilji, K. H., and McQuade, P. V. (1982), 'Laterally Loaded Drilled Pier Research', Report EL-2197, Vols. 1 and 2, Electric Power Research Institute, Palo Alto, 448p
  10. Manoliu, I., Dimitriu, D. V., Radulescu, N., and Dobrescu, G. (1985), 'Load-Deformation Characteristics of Drilled Piers', Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, Vol.3, San Francisco, pp.1553-1558
  11. Agaiby, S. W., Kulhawy, F. H., and Trautmann, C. H. (1991), 'Experimental Study of Drained Lateral and Moment Behavior of Drilled Shafts During Static and Repeated Loading', Report TR-100223, Electric Power Research Institute, Palo Alto, 299p
  12. Turner, J. P. and Kulhawy, F. H. (1987), 'Experimental Analysis of Drilled Shaft Foundations Subjected to Repeated Axial Loads Under Drained Conditions', Report EL-5325, Electric Power Research Institute, Palo Alto, 350p