Improved Performance of Microbial Fuel Cell Using Membrane-Electrode Assembly

  • PHAM THE HAl (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • JANG JAE KYUNG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • MOON HYUN SOO (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • CHANG IN SEOP (Water Environment and Remediation Research Center, Korea Institute of Science and Technology) ;
  • KIM BYUNG HONG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
  • Published : 2005.04.01

Abstract

A mediator-less microbial fuel cell (MFC) was used to determine the performance effects of a membrane­electrode assembly (MEA). The MFC with an MEA generated a higher current with an increased coulomb yield when compared to an MFC with a separate cathode. Less oxygen was diffused through an MEA than through a Nafion membrane. The MFC performance was improved with a buffer, although a high-strength buffer reduced the performance.

Keywords

References

  1. Bond, D. R. and D. R. Lovley. 2003. Electricity production by Geohacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548- 1555 https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  2. Eaton, A. D., L. S. Clesceri, and A. E. Greenberg. 1995. Standard Method For the Examination of Water and Wastewater. pp. 5- 14. 19th Ed. American Public Health Association, Washington D.C., U.S.A
  3. Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less Microbiol fuel cell. Biosens. Bioelectron. 18: 327- 334 https://doi.org/10.1016/S0956-5663(02)00110-0
  4. Jang J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. S. Moon, K. S. Cho, and B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less Microbiol fuel cell. Process Biochem. 39: 1011-1017
  5. Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A Microbiol fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 25: 1357- 1361 https://doi.org/10.1023/A:1024984521699
  6. Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrijaciens. J. Microbiol. Biotechnol. 9: 127-131
  7. Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less Microbiol fuel cell. Biotechnol. Lett. 25: 541-545 https://doi.org/10.1023/A:1022891231369
  8. Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of Microbiol community generating electricity using a fuel cell type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681 https://doi.org/10.1007/s00253-003-1412-6
  9. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less Microbiol fuel cell using a metal reducing bacterium, Shevcaneila putrejaciens. Enzyme Microb. Technol. 30: 145- 152 https://doi.org/10.1016/S0141-0229(01)00478-1
  10. Larminie, J. and A. Dicks. 2000. Fuel Cell Systems Explained, pp. 61- 107. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex, U.K
  11. Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58- 61 https://doi.org/10.1007/s00253-002-0972-1
  12. Park, D. H. and J. G. Zeikus, 2003. Improved fuel cell and electrode designs for producing electricity from Microbiol degradation. Biotechnol. Bioeng. 81: 348- 355 https://doi.org/10.1002/bit.10501
  13. Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Cathode reaction in a mediator-less Microbiol fuel cell with graphite or platinum-coated graphite as the cathode. J. Microbiol. Biotechnol. 14: 324- 329