Antiplatelet Activity of Thujopsis dolabrata var. hondai-Derived Component Against Platelet Aggregation

  • SON DONG JU (College of Natural Sciences, Soonchunhyang University) ;
  • PARK YOUNG HYUN (College of Natural Sciences, Soonchunhyang University) ;
  • KIM YOUNG MI (Research Center for Industrial Development of Biofood Materials and Faculty of Biotechnology, College of Agriculture, Chonbuk National University) ;
  • CHUNG NAM HYUN (College of Life and Environmental Sciences, Korea University) ;
  • LEE HOI SEON (Research Center for Industrial Development of Biofood Materials and Faculty of Biotechnology, College of Agriculture, Chonbuk National University)
  • Published : 2005.04.01

Abstract

The steam distillate obtained from Thujopsis dolabrata var. hondai sawdust was fractionated by centrifugal thin-film evaporation, and the fractions were then investigated for antiplatelet activity using washed rabbit platelets. The biologically active constituent of T. dolabrata var. hondai sawdust was isolated by silica gel column and HPLC chromatographies and characterized as carvacrol by various spectral analyses. Carvacrol inhibited platelet aggregation induced by collagen, arachidonic acid, and platelet activating factor with IC$_{50}$ values of 12.6, 2.5, and 385.3 $\mu$M, respectively. However, carvacrol had no effect on thrombin, calcium ionophore A23l87, or phorbol l2-myristate l3-acetate induced platelet aggregation. Carvacrol was a much more potent inhibitor, as antiplatelet agents, compared with aspirin. These results suggest that carvacrol isolated from T. dolabrata var. hondai sawdust may be useful as a lead compound for inhibiting arachidonic acid-induced platelet aggregation.

Keywords

References

  1. Ahn, Y. J., S. B. Lee, T. Okubo, and M. Kim. 1995. Antignawing factor of crude oil derived from Thujopsis dolabrata S. et. Z. var. hondai sawdust against mice. J. Chemical Ecology 21: 263- 271 https://doi.org/10.1007/BF02036716
  2. Ahn, Y. J., S. B. Lee, H. S. Lee, and G. H. Kim. 1998. Insecticidal and acaricidal activity of carvacrol and $\beta-thujaplicine$ derived from Thujopsis dolabrata var, hondai sawdust. J. Chemical Ecology 24: 81- 90 https://doi.org/10.1023/A:1022388829078
  3. Balandrin, M., J. Klocke, E. S. Wurtele, and W. H. Bollinger. 1985. Natural plant chemicals: Sources of industrial and medicinal materials. Science 228: 1154- 1160 https://doi.org/10.1126/science.3890182
  4. Chang, F. R., J. L. Wei, C. M. Teng, and Y. C. Wu. 1998. Antiplatelet aggregation constituents from Annona purpurea. J. Nat. Prod. 61: 1457-1461 https://doi.org/10.1021/np9800046
  5. Dinerman, J. L. and J. L. Mehta. 1990. Endothelial, platelet and leukocyte interactions in ischemic heart disease: Insights into potential mechanisms and their clinical relevance. J. Am. Cardiol. 16: 207- 222 https://doi.org/10.1016/0735-1097(90)90481-4
  6. Enomoto, H., Y. Yoshikuni, Y. Yasutomi, K. Ohata, K. Sempuku, K. Kitaguchi, Y. Fujita, and T. Mori. 1997. Hypocholesterolemic action of tricyclic diterpenoids in rats. Chem. Pharm. Bull. 25: 507 - 510
  7. Hasegawa. S. and Y. Hirose. 1982. Terpenoids from the seed of Thujopsis dolabrata var. dolabrata. Phytochemisty 21: 643- 646 https://doi.org/10.1016/0031-9422(82)83156-7
  8. Hirsh. J. 1987. Hyperactive platelets and complications of coronary artery disease. N. Engl. J. Med. 316: 1543- 1544 https://doi.org/10.1056/NEJM198706113162410
  9. Hwang. Y. H. and H. S. Lee. 2002. Antibacterial activity of Pinus densijlora leaf-derived components toward human intestinal bacteria. J. Microbiol. Biotechnol. 12: 610- 616
  10. Ito. M., M. Hamada. M. Arakawa, and F. Abe. 1980. Antimicrobiol activities of Hiba oil, Thujopsene and its various derivatives. Bokin Bobai 8: 3- 6
  11. Kim. M. K. and H. S. Lee. 2002. Growth responses of various flower extracts toward human intestinal microflora. Food Sci. Biotechnol. 11: 444-447
  12. Lin. C. N. and C. M. Lu. 1996. Novel antiplatelet constituents from Formosan Moraceous plants. J. Nat. Prod. 59: 834- 838 https://doi.org/10.1021/np960376j
  13. Packham, M. A. 1994. Role of platelets in thrombosis and hemostasis. Can. J. Physiol. Pharm. 72: 278- 284 https://doi.org/10.1139/y94-043
  14. Rho. M. C., Y. H. Park. S. Sasaki. M. Ishibashi. K. Kondo. J. Kobayashi. and Y. Ohizumi. 1996. The mode of rabbit platelet shape change and aggregation induced by theonezolide-A. a novel polyketidc macrolide, isolated from the Okinawan marine sponge Theonella sp. Can. J. Physiol. Pharm. 74: 193- 199 https://doi.org/10.1139/cjpp-74-2-193
  15. Ross. R. 1986. The pathogenesis of atherosclerosis: An update. N. Engl. J. Med. 314: 488- 500 https://doi.org/10.1056/NEJM198602203140806
  16. Samuelsson, B., M. Goldyne, E. Granstrom, M. Hamberg. S. Hammarstrom, and C. Malmsten. 1978. Prostaglandins and thromboxanes, Annu. Rev. Biochem. 47: 997- 1029 https://doi.org/10.1146/annurev.bi.47.070178.005025
  17. Siess, W. 1989. Molecular mechanisms of platelet activation. Physiol. Rev. 69: 58- 178 https://doi.org/10.1152/physrev.1989.69.1.58
  18. Singh. D. P., A. Kumar. and M. B. Tyagi. 2003. Biotoxic cyanobacterial metabolites exhibiting pesticidal and mosquito larvicidal activities, J. Microbiol. Biotechnol. 13: 50- 56
  19. Son. D. J., S. E. Lee. and B. S. Park. 2003. Inhibitory effects of naturally occurring flavonoids on human intestinal bacterium. Clostridium perfringens. Food Sci. Biotechnol. 12: 180- 182
  20. Song, M. H., K. Sclvam, H. Y. Jeong. and K. S. Chae. 2003. Inhibition of asexual sporulation and growth of Aspergillus niger and Aspergillus oryzae by propylamine. J. Microbiol. Biotechnol. 13: 146- 148
  21. Tsai, W. J., W. C. Hsin, and C. C. Chen. 1996. Antiplatelet flavonoids from seeds of Psoralea corylifolia. J. Nat. Prod. 59: 671-672 https://doi.org/10.1021/np960157y
  22. Tsai. I. L., W. Y. Lin, C. M. Teng, T. Ishikawa. S. L. Doong, M. W. Huang, Y. C. Chen, and I. S. Chen. 2000. Coumarins and antiplatelet constituents from the root bark of Zanthoxylum schinifolium. Planta Medica 66: 618- 723 https://doi.org/10.1055/s-2000-8648