Electrochemical Regeneration of FAD by Catalytic Electrode Without Electron Mediator and Biochemical Reducing Power

  • JEON SUNG JIN (Department of Biological Engineering, Seokyeong University) ;
  • SHIN IN HO (Department of Biological Engineering, Seokyeong University) ;
  • SANG BYUNG IN (Division of Water Environment and Remediation, KIST) ;
  • PARK DOO HYUN (Department of Biological Engineering, Seokyeong University)
  • Published : 2005.04.01

Abstract

We created a new graphite-Cu(II) electrode and found that the electrode could catalyze FADH$_2$ oxidation and FAD reduction coupled to electricity production and consumption, respectively. In a fuel cell with graphite-Cu(II) anode and graphite-Fe(III) cathode, the electricity was produced by coupling to the spontaneous oxidation of FADH$_2$ Fumarate and xylose were not produced from the enzymatic oxidation of succinate and xylitol without FAD, respectively, but produced with FAD. The production of fumarate and xylose in the reactor with FAD electrochemically regenerated was maximally 2- 5 times higher than that in the reactor with FAD. By using this new electrode with catalytic function, a bioelectrocatalysts can be engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and FAD can function for biotransformation without an electron mediator and second oxidoreductase for cofactors recycling.

Keywords

References

  1. Bourdillon, C., R. Lortie, and J. M. Laval. 1988. Gluconic acid production by an immobilized glucose oxidase reactor with electrochemical regeneration of an artificial electron acceptor. Biotechnol. Bioengineering 31: 553- 558 https://doi.org/10.1002/bit.260310607
  2. Cecchini, G., H. Sices, I. Schroder, and R. P. Gunsalus. 1995. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain. J. Bacteriol. 177: 4587-4592. https://doi.org/10.1128/jb.177.16.4587-4592.1995
  3. Chenault, H. K. and G. M. Whitesides. 1984. Regeneration of nicotiamide cofactors for use in organic synthesis. Appl. Biochem. Biotechnol. 14: 147-197
  4. Eppink, M. H. M., S. A. Boeren, J. Vervoort, and W. J, H. van Berkel. 1997. Purification and properties of 4hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. J. Bacteriol. 179: 6680-6687 https://doi.org/10.1128/jb.179.21.6680-6687.1997
  5. Fang, J.-M. and C. H. Lin. 1995. Enzymes in organic synthesis: Oxidoreductions. J. Chem. Soc. Perkin Trans. 1: 967-978
  6. Gisi, M. R. and L. Xun. 2003. Characterization of chlorophenol 4-monooxygenase and NADH:flavin adenine dinucleotide oxidoreductase of Burkholderia cepucia AC 1100. J. Bacteriol, 185: 2786- 2792 https://doi.org/10.1128/JB.185.9.2786-2792.2003
  7. Gorlatova, N., M. Tchorzewski, T. Kurihara, K. Soda, and N. Esaki. 1998. Purification, characterization, and mechanism of a flavin mononucleotide-dependent 2-nitropropane dioxygenase from Neurospora crassa. Appl. Environ. Microbiol. 64: 1029- 1033
  8. Gottschalk. G. 1986. Bacterial Metabolism, pp. 149- 150. Second Ed., Springer-Verlag, New York, U.S.A
  9. Lee, J. W., A. Goel, M. M. Ataai, and M. M. Domach. 2002. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 258- 267
  10. Lee. Y. J., K. H. Cho, and Y. J. Kim. 2003. The membranebound NADH:ubiquinone oxidoreductase in the aerobic respiratory chain of marine bacterium Pseudomonas nautical. J. Microbiol. Biotechnol. 13: 225- 229
  11. Lee, W. J., M.-D. Kim, M.-S. Yoo, Y.-W. Ryu, and J.-H. Seo. 2003. Effects of xylose reductase activity on xylitol production in two-substrate fermentation of recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 13: 725-730
  12. Li, K., F. Xu, and K.-E. L. Eriksson 1999. Comparison of fungal Iaccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl. Environ. Microbiol. 65: 2654- 2660
  13. Miyawaki, O. and T. Yano. 1992. Electrochemical biorcactor with regeneration of $NAD^{+}$ by rotating graphite disk electrode with PMS adsorbed. Enzvme Microbiol. Technol. 14: 474-478 https://doi.org/10.1016/0141-0229(92)90140-J
  14. Moreno, C., C. Costa, I. Moura. J. Le Gall. M. Y. Liu, W. J. Payene, C. van Duk, and J. J. G. Moura. 1993. Electrochemical studies of the hexaheme nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Eur. J. Biochem. 212: 79- 86 https://doi.org/10.1111/j.1432-1033.1993.tb17635.x
  15. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403- 2410
  16. Park. D. H. and Y. K. Park. 2001. Bioelectrochmical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol, 11: 406- 411
  17. Park, J. Y., S. J. Park, S. J. Nam, Y. L. Ha, and J. H. Kim. 2003. Cloning and characterization of the L-Iactate dehydrogenase gene (ldhL) from Lactobacillus reuteri ATCC 55739. J. Microbiol. Biotechnol. 11: 716-721
  18. Shin, I. H., S. J. Jeon, and D. H. Park. 2004. Catalytic oxidoreduction of pyruvatellactate and acetate/ethanol coupled to electrochemical oxidoreduction of $NAD^{+}/NADH$. J. Microbiol. Biotechnol. 14: 540- 546
  19. Sugimoto. M., M. Tanabe, M. Hataya, S. Enokibara, J. A. Duine, and F. Kawai. 2001. The first step in polyethylene glycol degradation by Sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J. Bacteriol. 183: 6694- 6698 https://doi.org/10.1128/JB.183.22.6694-6698.2001
  20. Tanner. A. and D. J. Hopper. 2000. Conversion of 4-hydroxyacetophenone into 4-phenyl acetate by a flavin adenine dinucleotide-containing Baeye- Villiger-type monooxygenase. J. Bacteriol. 182: 6565- 6569 https://doi.org/10.1128/JB.182.23.6565-6569.2000
  21. Verho. R., J. Londesborough, M. Penttila, and P. Richard. 2003. Engineering redox cofactor regeneration for improved pentose fermentation of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 5892- 5897 https://doi.org/10.1128/AEM.69.10.5892-5897.2003
  22. Walfridsson, M., J. Hallborn, M. Penttila, S. Keranen, and B. H.-Hagerdal. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 61: 4148-4190
  23. Wong. C.-H. and G. M. Whitesides. 1994. Enzymes in Synthetic Organic Chemistrv. Elsevier Science Ltd., Oxford
  24. Xun, L. and E. R. Sandvik. 2000. Characterization of 4hydroxyphenylacetate 3-hydroxylase of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase. Appl. Environ. Microbiol. 66: 481- 486 https://doi.org/10.1128/AEM.66.2.481-486.2000