The Prospective of Antigen-presenting Cells in Cancer Immunotherapy

항원제시세포를 이용한 암 치료제 개발전망

  • Shim Doo-Hee (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
  • Published : 2004.12.01

Abstract

All around the world, the rate of attack of cancer diseases has been going up and the number of cancer patients has been increasing every year. Cancer can be divided into malignant tumor and benign tumor according to its growth appearance. Many studies and experiments have been conducted and the various treatment are being created to find the way to care malignant. Dendritic cells (DCs), which is an agent of cancer treatments by using an immune reaction in our body, plays an important role to present by a tumor antigen to cytotoxic T-cell and help them to attack the tumor cell directly. However there are some defects of this therapy. Soluble human leukocyte antigen-immunoglobulin fusion protein (HLA-Ig) based artificial antigen presenting cell (aAPC) as the antigen presenting cell (APC) which is complement and overcome some of the limitations of dendritic cell-based vaccines and ex vivo expansion of human T cells is new method for cancer therapy. In this article, we are reviewing the role of DCs and the treatment with it, and searching for the possibility of the new development of immunotherapy for cancer.

전 세계적으로 암의 발병률의 증가하고 있고 또한 그 수는 해마다 증가하는 실정이다. 암은 성장양상에 따라 악성종양과 양성종양으로 나뉘는데 암으로 구분되는 악성종양을 치료하기 위한 여러 가지 치료법들이 시행되고 또 개발되고 있다. 그중에서 dendritic cells (DCs)는 인체 내 면역반응을 이용하여 암을 치료하는 방법으로 적응면역에 관여하는 cytotoxic T cell (CTL)에 항원을 제시하여 CTL로 하여금 종양세포를 직접적으로 공격하도록 도움을 주는 역할을 한다. 그러나 여기에는 여러 가지 단점이 있다. 이 단점을 보완하기 위한 새로운 방법으로 artificial antigen-presenting cell (aAPC)을 이용한 치료법이 개발되고 있다. 가용성의 human leukocyte antigen-immunoglobulin fusion protein (HLA-Ig)를 기초한 aAPC은 DCs의 단점을 보완한 항원제시세포로써 DCs보다 더욱 효과적으로 CTL반응을 유도해 낼 것으로 기대한다. 본 총설에서는 이 DCs의 역할과 이들을 이용한 암 치료법에 대해서 논하고 그 개발 가능성에 대해서 알아보도록 하겠다.

Keywords

References

  1. International Agency for Research on Cancer-WHO. Cancer research for cancer control. IARC, Lyon, France, 2001
  2. Yoo, K. Y. and H. R. Shin (2003), Cancer Epidemiology and Prevention, Kor. J. Epidem. 25(1), 1-15
  3. Suh, H. S. and M. D. (1993), The Role of Radiation Therapy in Cancer Management, Inje. Med. J. 4(3), 253-258
  4. Bae, J. M. and J. P. Kim (1998), Effect of adjuvant immunochemotherapy on immunologic function of gastric cancer patients, Kor. Sur. Society 55(2), 190-197
  5. Finn, O. J. (2004), Tumor immunology Tumor immunology at the service of cancer immunotherapy, Curr. Opin. Immunol. 16, 1-3
  6. Gunzer, M. et al. (2001), Dendritic cells and tumor immunity immunology, Immunology 13, 291-302
  7. Singh, M. and D. O'Hagan (1999), Advances in vaccine adjuvants, Nat. Biotechnol. 17, 1075-1081
  8. Schijins, V. E. (2000), Immunological concepts of vaccine adjuvant activity, Curr. Opin. Immunol. 12, 456-463
  9. Krueger, C. et al. (2004), Quality and quantity: new strategies to improve immunotherapy of cancer, TRENDS in Mol. Med. 10(5), 205-208
  10. Hsueh, E. C., R. K. Gupta, K. Qi, D. L. Morton (1998), Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine, J. Clin. Oncol. 16, 2913-2920
  11. Soiffer, R. et al. (2003), Vaccination With Irradiated, Autologous Melanoma Cells Engineered to Secrete Granulocyte-Macrophage Colony-Stimulating Factor by Adenoviral-Mediated Gene Transfer Augments Antitumor Immunity in Patients With Metastatic Melanoma, J. Clin. Oncol. 21(17), 3343-3350
  12. Belli, F. et al. (2002), Vaccination of Metastatic Melanoma Patients With Autologous Tumor-Derived Heat Shock Protein gp96-Peptide Complexes: Clinical and Immunologic Findings, J. Clin. Oncol. 20(20), 4169-4180
  13. Antonia, S., J. J. Mule, and S. Weber (2004), Current developments of immunotherapy in the clinic, Curr. Opin. Immunol. 16, 1-7
  14. Pulendran, B., K. Palucka, and J. Banchereau (2001), Sensing pathogenes and tuning immune responses, Science 293(5528), 253-256
  15. Banchereau. J. and R. M. Steinman (1998), Dendritic cells and the control of immunity, Nature 392, 245-252
  16. Finn, O. J. (2003), Cancer vaccines: between the idea and the reality, Nat. Rev. Immunol. 3(8), 630-641
  17. Wick, M. et al. (1997), Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion or systemic anergy, J. Exp. Med. 186(2), 229-238
  18. Enk, A. H., H. Jonuleit, J. Saloga, and J. Knop (1997), Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma, Int. J. Cancer. 73(3), 309-316
  19. Lee, P. P. et al. (1999), Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients, Nat. Med. 5, 677-685
  20. Knuth, A., T. Wolfel, and E. Klemann et al. (1989), Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection, Proc. Natl. Acad. Sci. USA 86(8), 2804-2808
  21. O'Doherty, U. et al. (1994), Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature, Immunology 82, 878-884
  22. Jefford, M., E. maraskovsky, J. Cebon, and I. D. Davis (2001), The use of dendritic cells in cancer therapy. Lancet Oncol. 2, 343-353
  23. Jung, S. (2004), Good, Bed and beautiful-the role of dendritic cells in autoimmunity, Autoimmunity Rev. 3, 54-60
  24. Martins, M. T. and A. L. Witzel, et al. (2004), Dendritic cell sarcoma of the oral cavity, Oral. Oncol. 40, 341-347
  25. Dallal, R. M. and M. T. Lotze (2000), The dendritic cell and human cancer vaccines, Curr. Opin. Immunol. 12, 583-588
  26. Carbone, F. R. and W. R. Heath (2003), The role of dendritic cell subsets in immunity to virus, Curr. Opin. Immunol. 15, 416-420
  27. Steinman, R. M. and M. Pope (2002), Exploiting dendritic cells to improve vaccine efficacy, J. Clin. Invest. 109(12), 1519-1526
  28. Hwang, J. W., M. Kim, K. Kim (1998), T cell epitope analysis of structural protein of adenovirus, Kor. J. Immunol. 20(4), 435-442
  29. Banchereau, J., R. M. Steinman (1998), Dendritic cells and the control of immunity, Nature 392, 245-252
  30. Yuji, T., T. Masatoshi et al. (2003), T-cell-dependent antitumor effects produced by CD40 ligand expressed on mouse lung carcinoma cells are linked with the maturation of dendritic cells and secretion of a variety of cytokines, Cancer Gene Ther. 10, 451-456
  31. Terabe, M. and J. A. Berzofsky (2004), Immunoregulatory T cells in Tumor Immunity, Curr. Opin. Immunol. 16, 1-6
  32. Maus, M. V., J. L. Riley, and C. H. June et al. (2003), HLA teramer-based artificial antigen-presenting cells for stimulation of CD4+ T cells, Clin. Immunol. 106, 16-22
  33. Bozza, S. and L. Romani et al. (2004), Dendritic cell-based vaccination against opportunistic fungi, Vaccine 22, 857-864
  34. Kjaergaard, J., K. Shimizu, and S. Shu (2003), Electrofusion of syngeneic dendritic cells and tumor generates potent therapeutic vaccine, Cell. Immunol. 255, 65-74
  35. Thumann, P. I. Moc and L. Jenne et al. (2003), Antigen loading of dendritic cells with whole tumor cell preparations, J. Immunol. Methods 277, 1-16
  36. Nastle, F. O., S. Alijagic, and M. Gilliet et al. (1998), Vaccination of melanoma patients with peptide- or tumor-lysate plused dendritic cells, Nat. Med. 4, 328-332
  37. Sadanaga, N. et al. (2001), Dendritic cell vaccination with MAGE peptides is a novel therapeutic approach for gastrointestinal carcinomas, Clin. Cancer. Res. 7, 2277-2284
  38. Boon, T. and B. V. Eynde (2003), Tumor Immunology, Curr. Opin. Immunol. 15, 129-130
  39. Yan, X., B. D. Johnson, and R. J. Orentas (2004), Murine CD8 lymphocyte expansion in vitro by artificial antigen-presenting cells expressing CD137L (4-1BBL) is superior to CD28, and CD137L expression on neuroblastoma expands CD8 tumor-reactive effector cells in vivo, Immunology 112(1), 105-116
  40. Orchard, P. J. et al. (2002), Clinical-scale selection of anti-CD3 /CD28-activated T cells after transduction with a retroviral vector expressing herpes simplex virus thymidine kinase and truncated nerve growth factor receptor, Hum. Gene Ther. 13(8), 979-988
  41. Ruffini, P. A. and L. W. Kwak (2001), Immunotheraphy of multiple myeloma, Semin. Hematol. 38, 260-267
  42. Ratta, M. et al. (2002), Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6, Blood 100, 230-237
  43. May, K. F., Jr., L. Chen, P. Zheng, and Y. Lui (2002), Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by priming survival but not clonal expansion of tumor-specific CD8+ T cells, Cancer Res. 62, 3459-3465
  44. Bella, S. D. et al. (2003), Altered maturation of peripheral blood dendritic cells in patients with breast cancer, Br. J. cancer. 89, 1463-1472
  45. Oleike, M. et al. (2003), Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells, Nature 9(5), 619-625