산성토양에서 내산성 종속영양세균과 나프탈렌분해세균의 분포 및 특성

Distribution and Characteristics of Acidotolerant Heterotrophic and Naphthalene­Degrading Bacteria in Acidic Soils

  • 문용석 (울산대학교 자연과학대학 미생물 유전공학전공) ;
  • 주광일 (울산대학교 자연과학대학 미생물 유전공학전공) ;
  • 김종설 (울산대학교 자연과학대학 미생물 유전공학전공)
  • Moon Yong-Suk (Department of Microbiology and Genetic Engineering, University of Ulsan) ;
  • Chu Kwang-Il (Department of Microbiology and Genetic Engineering, University of Ulsan) ;
  • Kim Jongseol (Department of Microbiology and Genetic Engineering, University of Ulsan)
  • 발행 : 2004.12.01

초록

울산석유화학공단과 인접한 지역(선암)및 농촌지역(대암)의 산림토양에서 내산성 종속영양세균 및 나프탈렌분해세균의 분포와 특성을 조사하였다. 토양 pH의 평균은 선암과 대암에서 각각 3.8과 4.6으로 측정되었다. 종속영양세균과 나프탈렌분해세균을 최확수치(MPN)법으로 계수하였으며, 선암의 경우 pH 7.0과 pH 4.0에서 생장하는 종속영양세균 수의 중앙간은 각각 $5.3{\times}10^7\;3.3{\times}10^7$ MPN/dried Soil g이었고, 나프탈렌분해세균 수의 중앙간은 pH 7.0과 4.0에서 각각 $5.6{\times}10^4$$4.0{\times}10^5$ MPN/dried soil g이었다. 대암에서 측정한 종속영양세균수의 중앙간은 두 pH 모두 선암에서보다 많았으나 나프탈렌분해세균의 농도는 선암이 대암보다 높았다. MPN시험관과 농화배양으로부터 17개의 나프탈렌분해세균을 분리하였으며, 이들은 Sphingomonas paucimobilis, Brevundimonas vesicularis, Burkholderia cepacia, Ralstonia pickettii, Pseudomonas fluorescens, Chryseomonas luteola 등으로 동정되었다. 분리한 17개 균주 중 6개는, 최소배지에서의 나프탈렌분해 활성이 PH 7.0에 비해 PH 4.0에서 더 높았으나 영양배지에 접종하였을 때의 생장정도는 pH 4.0이 pH 7.0보다 더 크지 않았다. 배지의 pH가 분리한 세균의 세포막 지방산 조성을 변화시켜 나프탈렌분해 활성에 영향을 주는 것으로 생각된다.

The distribution and characteristics of acidotolerant heterotrophic and naphthalene-degrading bacteria were investigated in two forest areas, one near Ulsan petrochemical industrial complex (Sunam) and the other in countryside (Daeam). Average values of soil pH at Sunam and Daeam were 3.8 and 4.6, respectively. When het­erotrophic and naphthalene-degrading bacteria were enumerated by most probable number (MPN) procedures at Sunam, the median values of heterotrophs growing at pH 7.0 and pH 4.0 were $5.3{\times}10^7\;and\;3.3{times}10^7$ MPN/g, whereas those of naphthalene-degraders were $5.6{\times}10^4\;and\;4.0{times}10^5$ MPN/g, respectively. While the medians of heterotrophs at Daeam were larger than those at Sunam, the concentrations of naphthalene-degraders were higher at Sunam compared to those at Daeam. From the MPN tubes and enrichment cultures, we obtained 17 isolates of naphthalene-degraders which were identified as Sphingomonas paucimobilis, Brevundimonas vesic­ularis, Burkholderia cepacia, Ralstonia pickettii, Pseudomanas fluorescens, and Chryseomonas luteola. Among them, 6 isolates showed higher naphthalene-degrading activity on minimal media of pH 4 compared to pH 7, whereas the extent of growth was not greater at pH 4 than at pH 7 when they were inoculated on nutrient-rich media. It is plausible that the pH may affect naphthalene-degrading activity of the isolates by changing fatty acid composition of bacterial membrane.

키워드

참고문헌

  1. 신만균, 최기룡. 1996. 울산공단 주변의 토양오염에 따른 원생동물의 분포. 한국환경과학학회지 5, 187-194
  2. 안영범, 조홍범, 최영길. 1998. 수계 세균 군집에 미치는 산성화 영향 모사 분석. 미생물학회지 34, 175-182
  3. 이승우, 이수욱. 1995. 울산 공단주변 산림토양의 산성화가 산림생태계의 양료와 중금속 분포에 미치는 영향. 한국임학회지 84, 286-298
  4. 정필문, 신광수, 임종순, 이인수, 박성주. 2001. 16S rDNA 염기서열에 의한 청정지역 및 공단지역내 식물잎권의 내산성세균 군집의 다영성. 미생물학회지 37, 265-272
  5. 환경부. 2002. 2001 토양측정망 운영결과
  6. 환경부. 1999. 토양오염공정시험방법, 환경부고시 1999-116
  7. Bååth, E., Å. Frostegård, and H. Fritze. 1992. Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl. Environ. Microbiol. 58, 4026-4031
  8. Ball, D.F. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcarious soil. J. Soil Sci. 15, 84-92
  9. Bedard, D.L., R. Unterman, L.H. Bopp, M.J. Brennan, M.L. Haberl, and C. Johnson. 1986. Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51, 761-768
  10. Bond, P.L., G.K. Druschel, and J.F. Banfield. 2000. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl. Environ. Microbiol. 66, 4962-4971
  11. Cerniglia, C.E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351-368
  12. Dedysh, S.N., N.S. Panikov, W. Liesack, R. Großkopf, J. Zhou, and J.M. Tiedje. 1998. Isolation of acidophilic methane-oxidizing bacteria from norther peat wetlands. Science 282, 281-284
  13. Edwards, K.J., T.M. Gihring, and J.F. Banfield. 1999. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl. Environ. Microbiol. 65, 3627-3632
  14. Forster. J.C. 1995. Soil sampling, handling, storage and analysis, p. 49-122. In K. Alef, and P. Nannipieri (ed.), Methods in applied soil microbiology and biochemistry. Academic Press, London, UK
  15. Fozo, E.M., and R.G. Quivey, Jr. 2004. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl. Environ. Microbiol. 70, 929-936
  16. Geiselbrecht, A.D., R.P. Herwig, J.W. Deming, and J.T. Staley. 1996. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments. Appl. Environ. Microbiol. 62, 3344-3349
  17. Hagedorn, C. 1976. Influences of soil acidity on Streptomyces populations inhabiting forest soils. Appl. Environ. Microbiol. 32, 368-375
  18. Hallberg, K.B., and D.B. Johnson. 2001. Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol. 49, 37-84
  19. Jung, M.C., I. Thornton, and H.-T. Chon. 2002. Arsenic, Sb, and Bi contamination of soils, plants, waters, and sediments in the vicinity of the Dalsung Cu-W mine in Korea. Sci. Tot. Environ. 295, 81-89
  20. Knaebel, D.B., T.W. Federle, D.C. McAvoy, and J.R. Vestal. 1996. Microbial mineralization of organic compounds in an acidic agricultural soil: effects of preadsorption to various soil constituents. Environ. Toxicol. Chem. 15, 1865-1875
  21. Koch A.L. 1994. Growth measurement, p. 248-276. In P. Gerhardt, R.G.E. Murray, W.A. Wood, and N.R. Krieg (ed.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C
  22. Krieg, N.R. and P. Gerhardt 1994. Solid, liquid/soild, and semisolid culture, p. 216-223. In P. Gerhardt, R.G.E. Murray, W.A. Wood, and N.R. Krieg (ed.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C
  23. Quentmeier, A., and C.G. Friedrich. 1994. Transfer and expression of degradative and antibiotic resistance plasmids in acidophilic bacteria. Appl. Environ. Microbiol. 60, 973-978
  24. Schrenk, M.O., K.J. Edwards, R.M. Goodman, R.J. Hamers, and J.F. Banfield. 1998. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279, 1519-1522
  25. Stapleton, R.D., D.C. Savage, G.S. Sayler, and G. Stacey. 1998. Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl. Environ. Microbiol. 64, 4180-4184
  26. Sutherland, J.B., F. Rafii, A.A. Kahn, and C.E. Cerniglia. 1995. Mechanisms of polycyclic aromatic hydrocarbon degradation, p. 269-306. In L.Y. Young and C. E. Cerniglia (ed.), Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, NY
  27. Tranvik, L.J., W. Granéli, and G. Gahnström. 1994. Microbial activity in acidified and limed humic lakes. Can. J. Fish. Aquat. Sci. 51, 2529-2536