DOI QR코드

DOI QR Code

울산지역 모자익 경관에서의 조류 다양성

Bird Diversity on Area around the Ulsan Mosaic Landscape

  • 이원호 (동아대학교 자연과학대학 생명과학과) ;
  • 장지덕 (동아대학교 자연과학대학 생명과학과) ;
  • 최병인 (동아대학교 자연과학대학 생명과학과) ;
  • 강성룡 (동아대학교 자연과학대학 생명과학과) ;
  • 권기정 (동아대학교 자연과학대학 생명과학과)
  • Lee, Won-Ho (Dept. of Biological Science, College of Science, Dong-A University) ;
  • Jang, Ji-Doek (Dept. of Biological Science, College of Science, Dong-A University) ;
  • Choi, Byung-In (Dept. of Biological Science, College of Science, Dong-A University) ;
  • Kang, Sung-Ryong (Dept. of Biological Science, College of Science, Dong-A University) ;
  • Kwon, Ki-Chung (Dept. of Biological Science, College of Science, Dong-A University)
  • 발행 : 2004.12.01

초록

울산지역의 조류 다양성을 위한 자연경관 구성을 파악하기 위해서 2002년 5월부터 11월까지 센서스를 하였다. 서식지 변수를 1)산림의 형태와 범위, 2)산림이나 농작물로 분류되지 않는 잔류지, 3)경작지 변수의 3가지 주된 범주에 연관시켜 평가하였다. 산림이나 서식지 간의 식생 차이에 대한 군집의 분석은 춘($79.06\%$)${\cdot}$추($57.77\%$)계 모두 산림지역의 군집 구성이 가장 높게 나타났으며, 잔류지는 군집구성($17.98{\sim}23.16\%$)이 거의 비슷하게 나타났고, 경작지는 춘계($2.94\%$)보다는 추계($18.47\%$)에 군집 구성이 보다 높게 나타났다. 196개 지점의 요인 분석에서, 춘계에서 첫 번째 축(component I, $54.8\%$)은 산림지역의 변수인 침염수림과 활엽수림에 강하게 연관되어 있으며, 종과 개체는 첫 번째 축을 따라 좋아하는 활엽수림, 침염수림 및 혼유림으로 분명히 나누어져 있다. 두번째 축(component II, $19.8\%$)은 경작지에 영향을 받는 것으로 나타났다. 추계에서 요인 I($34.8\%$)과 요인II($23.6\%$)는 경작지 주변의 활엽수, 혼유림, 과수원, 저수지, Island에 거의 비슷한 수준으로 연관되어 있으며 종은 좋아하는 소서식지 별로 분명히 나누어져 있다. 53종 1,700여 개체가 기록되었으며, 춘${\cdot}$추계 모두 직박구리, 붉은머리오목눈이, 박새, 참새, 까치 5종이 전체 개체수의 $60\%$ 이상을 차지하였다. 춘${\cdot}$추계 모두 붉은머리오목눈이, 참새, 직박구리, 박새가 중요 종으로 나타났으며, 이들 4개 지역의 종다양성 지수와 종수의 기대치 등을 분석하였는데, 종의 풍부성이란 의미에서 볼 때 춘계에는 원효산($E[S_{59}]=19$)이 가장 높게 나타났으며, 문수산($E[S_{59}]=17$)이 가장 낮게 나타났다. 추계는 거남산($E[S_{63}]=16$)이 가장 높게 나타났으며, 문수산($E[S_{63}]=12$)이 가장 낮게 나타났다. 종의 유${\cdot}$무와 개체수를 비교하여 양 방향 유사도를 분석한 결과 춘계에는 문수산-원효산[0.62]이 비슷한 종과 개체수를 가지고 있었으며, 추계에는 문수산-정족산[0.53]의 조류군집이 매우 유사하게 나타났다.

Birds were censused to investigate the composition of landscape structure for bird diversity around Ulsan between May and November 2002. Associations with three main categories of habitat variables were evaluated: 1) amount and type of forest; 2) residual habitats not classified as forest or crops; 3) land-use variables. Cluster analysis of bird community shows the highest forest variables of $79.06\%$, and the others are residual habitat variables ($17.98\%$), land-use variables ($2.94\%$) in spring, and forest variables of $57.77\%$, land-use variables ($23.16\%$), residual habitat variables ($18.47\%$) in autumn, respectively. In Principal Component Analysis of a total of 196 sites, the populations are strongly correlated to Component I ($54.8\%$) based forest habitats and to Component II based on land-use. Species preferring sites were clearly separated with heterogenous forest along the first axis. In autumn, the populations are moderately correlated to Component I based land-use and to component II based forest habitats. Species preferring local habitats were also clearly separated. Fifty three species of 1,700 birds were recorded: Brown-eared Bulbul, Vinous-throated Parrotbill, Great Tit, Tree Sparrow and Black-billed Magpie accounted for over $60\%$ of the observed birds in spring and autumn. The important species were Brown-eared Bulbul, Vinous-throated Parrotbill, Great Tit and Tree Sparrow in spring and autumn. Four habitats in terms of their species richness were computed as follows: Wonhyosan has the highest an expected species number, $E[S_{59}]=19$. Moonsusan has the lowest expected species number, $E[S_{59}]=17$ in spring. In autumn, Kuenamsan has the highest expected species number, $E[S_{63}]=16$. Moonsusan has the lowest expected species number, $E[S_{63}]=12$. Pairwise similarity declined with increasing distance between recording site and recording site from Moonsusan-Wonhyosan (0.62), the same geographical regions clustered separately in a UPGMA cluster tree in spring, and in autumn from Moonsusan-ChungJoksan (0.53).

키워드

참고문헌

  1. 권기정. 1992. 원자력발전소 주변의 조류상. 한국생태학회지 14: 471-481
  2. 이원호, 이찬우, 장지덕, 권기정. 2001. 포한지역 조류의 종 다양성. Kor. J. Orni. 8: 75-92
  3. Andren, H. 1994. Effects of habitat fragmentation on bird and mammals in landscapes with different proportions of suitable habitat: a review. Oikos. 73: 355-366
  4. Baptista, L.F. and S.L.L. Gaunt. 1997. Bioacoustics as a tool in conservation studies. In J.R. clemmons and R. Buchholz(eds.), Behavioral approaches to conservation in the wild. Cambridge Univ. Press. Cambridge. U.K. pp. 212-242
  5. Berg, A. 2002. Composition and diversity of bird communities in Swedish farmland-forest mosaic landscapes. Bird Study. 49: 153-165 https://doi.org/10.1080/00063650209461260
  6. Berg, A. and T. Tjernberg. 1996. Common and rare Swedish vertebrates-distribution and habitat preferences. Biodiv. Conserv. 5: 101-128 https://doi.org/10.1007/BF00056294
  7. Berg, A. and T. Part. 1994. Abundance of farmland birds on arable and set-aside fields at forest edges. Ecography 17: 147-152 https://doi.org/10.1111/j.1600-0587.1994.tb00087.x
  8. Bibby, C.J., N.D. Burgess and D.A. Hill. 1992. Bird census techniques. Academic Press. London. 257 p
  9. Bolger, D.T., T.A. Scottand and J.T. Rotenberry. 1997. Breeding bird abundance in an urbanizing landscape in coastal southern California. Conserv. Biol. 7: 406-421
  10. Cody, M.L. 1985. Habitat selection in birds. Academic Press. London. 558 p
  11. Crawford, T.J. 1991. The Calculation of index number from wildlife monitoring data. In Goldsmith, B(eds.), Monitoring for conservation and ecology. Chapman and Hall. London. pp. 225-248
  12. Fuller, R.J., R.D. Gregory, D.W. Gibbons, J.H. Marchant, J.D. Wilson, S.R. Baillie and N. Carter. 1995. Population declines and range contractions among lowland farmland birds in Britain. Conserv. Biol. 9: 1425-1441 https://doi.org/10.1046/j.1523-1739.1995.09061425.x
  13. Hustings, F. 1992. European monitoring studies on breeding birds: an update. Bird Census News. 2:1-56
  14. James, F.C. and S. Rathbun. 1981. Rarefaction, relative abundance, and diversity of avian communities. Auk 98: 785-800
  15. Kricher, J.C. 1973. Summer bird species diversity in relation to secondary succession on the New Jersey Piedmont. Am. Midl. Naturalist 89: 121-137 https://doi.org/10.2307/2424141
  16. Lack, P. 1992. Birds on lowland farms. HMSO. London
  17. Loman, J. and T. von Schantz. 1991. Birds in farmland-more species in small than in large habitat gradients. Conserv. Biol. 5: 176-188 https://doi.org/10.1111/j.1523-1739.1991.tb00122.x
  18. Ludwig, J.A. and J.F. Reynolds. 1988. Statistical ecology. John Wiley & Sons. New York, 337 p
  19. Marchant, J.H., C. Forest and J.J.D. Greenwood. 1997. A review of large-scale generic population monitoring schemes in Europe. Bird Census News 2: 42-80
  20. Margalef, R. 1958. Information theory in ecology. General Systematics 3: 36-71
  21. Mountford, M.D. 1982. Estimation of population fluctuations with application to the common bird census. Appl. Statist. 31: 135-143 https://doi.org/10.2307/2347976
  22. Pannekoke, J. and A. Van Strein. 1998. TRIM 2.0 for windows (Trends & indices for monitoring data). Statistics. Voorburg Netherlands
  23. Pearson, S.M. 1993. The spatial extent and relative influence of landscape-level factors on wintering bird populations. Land-scape Ecol. 8: 3-18 https://doi.org/10.1007/BF00129863
  24. Robertson, J.G.M. and A. Berg. 1992. Status and population changes of farmland birds in southern Sweden. Orn. Svec. 2: 119-130
  25. Rottenbery, J.T. and J.A. Wiens. 1976. A method for estimating species dispersal from transect data. Am. Midl. Naturalist 89: 121-137
  26. Saunders, D.A., R. Hobbs and C.H. Margules. 1991. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5: 18-32 https://doi.org/10.1111/j.1523-1739.1991.tb00384.x
  27. Shannen, C.E. and W. Weaver. 1949. The mathmatical theory of communication. Uni. Illinois Press. Urbana. I.L.
  28. Siriwardena, G.M., S.R. Baillie., S.T. Buckland., R.M. Fewster., J.H. Marchart and J.D. Wilson. 1998. Trends in the abundance offarming bird: a quantitative comparison of smoothed common bird census indices. J. Appl. Ecol. 35: 24-43 https://doi.org/10.1046/j.1365-2664.1998.00275.x
  29. Sneath, P.H.A. and R.R. Sokal. 1973. Numerical Taxonomy.Freeman, San Francisco. C.A.
  30. Soderstrom, B. and T. Part. 2000. Influence of landscape scale on farmland birds breeding in seminatural pastures. Conserv. Biol. 14: 522-533 https://doi.org/10.1046/j.1523-1739.2000.98564.x
  31. SPSS. 1999. Base 9.0 Application Guide. SPSS Inc. Chicago
  32. Ter Brrak, C.J.F., A.J. Van Strien, R. Meijer and T.J. Verstral 1994. Analysis of monitoring data with many missing value: which method In Hagemeijer, W. & T. Verstrael(eds.), Bird number 1992. distribution, monitoring and ecological aspect. Voorburg and SOVON, Beek-Ubbergen. pp. 663-673
  33. Tramer, E.J. 1969. Bird species diversity: components of shannon's formula. Ecology. 50: 927-929 https://doi.org/10.2307/1933715
  34. Underhill, L.G. and R.P. Prys-Jones. 1994. Index numbers for waterbird population. Revise and methodology. J. Appl. Ecol. 34: 817-828
  35. Van Strien, A., J. Pannekoke and D.W. Gibbons. 2001. Indexing European bird population trends using results of national monitoring schemes: a trial of a new method. Bird Study 48: 200-213 https://doi.org/10.1080/00063650109461219

피인용 문헌

  1. Changes in Aquatic Insect Community Structure in Wonju Stream based on a Comparison of Previous Studies vol.36, pp.3, 2018, https://doi.org/10.11626/KJEB.2018.36.3.400