Analysis of Solids in Runoff to Prevent Solids Pollution

오염저감 기법개발을 위한 유출수내 고형물질 특성 규명

  • 이영수 (광운대학교 공과대학 환경공학과)
  • Received : 2003.08.22
  • Accepted : 2004.01.12
  • Published : 2004.02.15

Abstract

The fate and transport mechanism of pollutants which have affinities to particles, such as trace metals and some petroleum product based compounds, can be effectively explained by the movement of sediment. The sediment release from lands to adjacent water bodies due to rainfall events was investigated in an effort to predict the total suspended solids (TSS) concentrations in runoff. The contribution of sediment from land origin to the river TSS can be better understood by the relationship between TSS concentration and particle size in runoff. The sieve analysis was used to determine the particle size distribution and these results were incorporated into statistical models. The critical size of particles was set to $74{\mu}m$ which contributes to the river TSS concentration since fine particles (wash load) of the sediment in the runoff play the key role in constituting TSS in a water column of the river. Empirical relationships were developed to predict TSS in runoff from the percentage of the critical particle size and were proven statistically to be valid.

Keywords

References

  1. APHA, AWWA, and WEF (1998) Standard Methods for the Examination of Water and Wastewater, 20th Edition, Washington, D.C.
  2. Chapra, S.C. (1997) Surface Water Quality Modeing, McGraw-Hill, NewYork, NewYork
  3. Das, B.M. (1983) Advanced Soil Mechanics, New York, New York
  4. DiToro, D.M. (2001) Sediment Flux Modeling, Wiley-Interscience, New York
  5. Dunne, T. and Leopold, L.B. (1978) Water in Environmental Planning, Freeman, New York, New York
  6. Jansen, P. et al. (1979) Principles of River Engineering, Pitman Puhlishing, California
  7. Kim, N.O. and Woo, C.H. (1990) Some Practice for Erosion and Sedimentation Control during Construction in Site Design, Bulletin of Institute of Littoral Environment, Mokpo National University, 7, pp.89-95
  8. Neter, J., Wasserman, W. and Kutner, M. (1985) Applied Linear Regression Models, Richard D. Irwin, Inc.,New York, New York
  9. Thomann, R.V. and Mueller, J.A., (1987) Principles of Surface Water Quality Modeling and control, Harper and Row, New York, New York
  10. 박무종, 손광익 (1998) 토양침식의 발생원인과 분포특성, 한국수자원학회지, 31(6), pp. 26-33
  11. 박종관 (1993) Environmental Change of Suspended Sediment Discharge by Human Action, 한국환정과학학회지, 2(2), pp.153-161
  12. 손광익 (2000) 가속화되는 토양유실과 방지대책, 한국수자원학회지, 33(4), pp.28-34
  13. 신동훈, 우창호 (2000) 신도시 개발에 따른 토양유실량 변이예측에 과한 연구, Jr. Korea Planners Assoc., 35(6), pp.255-267
  14. 우보명 (1976) 토양침식에 작용하는 몇 가지 요인의 영향에 관한 연구, 한국임학회지, 29, pp. 54--101
  15. 우창호 (1994) 무계획적인 토사채취지의 문제점과 복구방안에 관한 연구, Bulletin of Institute of Littoral Environment, Mokpo National university, 11, pp.61-79
  16. 우효섭 (2001) 하천수리학, 청문각
  17. 이규성 (1994) 산림유역의 토양유실량 예측을 위한 지리정보시스템의 범용토양유실식 (USLE)에의 적용. 한국암학회지, 83, pp.322-330
  18. 정도현, 우보명 (1989) 임도구조 및 입지요인에 측구침식에 미치는 영향에 관한 연구. Seoul Nat'l Univ. J. Agr, Sci., 14(1) , pp.1-8
  19. 정영선, 신재성, 신영화 (1976) 야산개발지의 토양침식에 관하여, Korea Soc. Soil Sci. Fert., 9(1) pp. 9-16
  20. 환경부 (2001) 표토보전 및 침(유실)방지대책에 관한 연구, (사)한국지반환경공학회 수행