Alum Floc Attachment in Granular Media Filtration

입상여과에서 액반플럭의 부착

  • Received : 2004.09.06
  • Accepted : 2004.09.30
  • Published : 2004.11.30

Abstract

Granular media filtration is used almost universally as the last particle removal process in conventional water treatment plants. Therefore, superb particle removal efficiency is needed during this process to ensure a high quality of drinking water. However, every particle can not be removed during granular media filtration. Besides the pattern of particle attachment is different depending on physicochemical aspects of particles and suspension. Filtration experiments were performed in a laboratory-scale filter using spherical glass beads with a diameter of 0.55 mm as collectors. A single type of particle suspension (Min-U-Sil 5) and alum coagulation was used to destabilize particles. The operating conditions were similar to those of standard media filtration practice: a filtration velocity of 5 m/h. More favorable particles, i.e., particles with smaller surface charge, were well attached to the collectors especially during the early stage of filtration when zeta potential of particles and collectors are both negative. This selective attachment of the lower charged particles caused the zeta potential distribution (ZPD) of the effluent to move to a more negative range. On the other hand, the ZPDs of the effluent moved from more positive to less positive when the surface charge of particles was positive and this result was thought to be caused by ion transfer between particles and collectors.

입상여과는 표준식 정수처리 공정에서 입자물질 제거의 최종공정으로 대부분 사용되고 있다. 따라서 양질의 수돗물을 만들기 위해서는 입상여과에서 높은 수준의 입자물질 제거가 요구되고 있다. 그러나 여과공정에서 모든 입자물질을 제거할 수 없으며, 또한 입자물질의 부착특성은 입자와 용액의 물리화학적 특성에 따라 달라진다. 실험실규모의 여과칼럼과 입경 0.55mm의 유리구슬을 여재로 한 여과실험이 수행되었다. Min-U-Sil 5가 입자물질로 사용되었으며 입자물질을 불안정화하기 위하여 액반을 사용하였다. 운전조건은 표준입상여과와 동일하였으며 여과속도는 5m/h 였다. 입자와 여재가 모두 음의 표면전하를 갖을 경우 작은 표면 전하를 갖는 입자가 여과초기에 여재에 잘 부착되었다. 작은 표면전하를 갖는 입자의 선택적 부착은 유출수의 제타 전위분포를 더 음인 방향으로 이동시켰다. 한편 입자의 표면전하가 양의 값을 갖을 경우는 여과수 입자의 표면전하가 양의 큰 값에서 작은 값으로 변하였는데 이는 입자와 여재사이의 이온전이에 기인하는 것으로 생각된다.

Keywords

References

  1. Amirtharajah, A. and Mills, K.M., Rapid-mix Design for Mechanisms of Alum Coagulation, J. AWWA, 74(4), pp. 210-216 (1982)
  2. Amirtharajah, A. and Tambo, N., Mixing in Water Treatment. In Mixing in Coagulation and Flocculation, AWWARF, Denver, pp. 3-33 (1991)
  3. Edzwald, J.K., Ives, K.J., Janssens, J.G., McEwen, J.B. and Wiesner, M.R., Particle Separation Process, In Treatment Process for Particle Removal, AWWARF and AWWA, Denver, pp. 73-87 (1997)
  4. Hatukai, S., Ben-Tzur, Y. and Rebhun, M., Particle Counts and Size Distribution in System Design for Removal of Turbidity by Granular Deep Bed Filtration, Water Science and Technology, 36(4), pp. 225-230 (1997)
  5. Kim, J., Physicochemical Aspects of Particle Breakthrough in Granular Media Filtration, Ph.D. Dissertation, The University of Texas at Austin, pp. 71-79 (2004)
  6. Letterman, R.D., Amirtharajah, A. and O'Melia, C.R., Coagulation and Flocculation, In Water Quality and Treatment, 5th Ed. McGraw-Hill, New York, pp. 6.1-6.44 (1999)
  7. McTigue, N.E., LeChevallier, M., Arora, H. and Clancy, J., National Assessment of Particle Removal by Filtration, AWWARF and AWWA, Denver, CO, pp. 169-175 (1998)
  8. Tobiason, J.E. and O'Melia, C.R., Physicochemical Aspects of Particle Removal in Depth Filtration, J. AWWA, 80(12), pp. 54-64 (1988)