Preparation and Characterization of Demineralized Bone Particle-loaded PLGA Scaffold for Tissue Engineered Bone

조직공학적 골재생을 위한 탈미넬화된 골분을 함유한 다공성 지지체의 제조 및 그 특성

  • Jang Ji Wook (Department of Polymer Engineering, Pukyong National University) ;
  • Lee Bong (Department of Polymer Engineering, Pukyong National University) ;
  • Han Chang Whan (Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea) ;
  • Kim Mun Suk (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Cho Sun Hang (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Lee Hai Bang (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Khang Gilson (Department of Polymer Nano Science and Technology, Chonbuk National University)
  • 장지욱 (부경대학교 고분자공학과) ;
  • 이봉 (부경대학교 고분자공학과) ;
  • 한창환 (가톨릭 의과대학 정형외과) ;
  • 김문석 (한국화학연구원 나노생체재료연구팀) ;
  • 조선행 (한국화학연구원 나노생체재료연구팀) ;
  • 이해방 (한국화학연구원 나노생체재료연구팀) ;
  • 강길선 (전북대학교 고분자 나노공학과)
  • Published : 2004.09.01

Abstract

One of the significant natural bioactive materials is demineralized bone particle (DBP) whose has a powerful induce. of new bone growth. In this study, we developed the DBP loaded poly-lactide (PLA) and poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. PLA/DBP and PLGA/DBP scaffolds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy. BMSCs were stimulated by osteogenic medium and characterized by histological stained Wright-Giemsa, Alizarin red, von Kossa, and alkaline phosphate activity (ALP). DBP impregnated scaffolds with BMSCs were implanted into the back of athymic nude mouse to observe the effect of DBP on the osteoinduction compared with control scaffolds. It can be observed that the porosity was above $90.2\%$ and the pore size was above 69.1$\mu$m. BMSCs could be differentiated into osteoprogenitor cells as result of wright-giemsa, alizarin red, von Kossa and ALP staining. In in vivo study, we could observed calcification region in PLA/DBP and PLGA/DBP groups, but calcification did not occur almost in control scaffolds. From these results, it seems that DBP as well as BMSCs play an important role for bone induction in PLA/DBP and PLGA/DBP scaffolds.

생체적합성 천연재료 중 하나인 탈미네랄화된 골분 (demineralized bone particle, DBP)은 골형성단백질 (BMP)을 함유하고 있어 골수간엽줄기세포 (BMSCs)의 분화를 유도한다. 본 연구에서는 DBP를 함유한 폴리 락타이드 (PLA)와 락타이드-글리콜라이드 공중합체 (PLGA) 다공성 지지체를 용매 캐스팅/염추출법으로 제조하였고, 수은다공측정계 및 전자주사현미경을 이용하여 특성결정 하였다. BMSCs는 골분화 배지를 이용하여 조골세포로 분화시켜 Wright-Giemsa, Alizarin red, von Kossa 및 ALP 염색으로 확인하였다. DBP가 함유된 지지체와 DBP가 함유되지 않은 지지체에 BMSCs를 파종한 후 면역결핍 누드마우스의 피하에 삽입하여 이들의 골형성 정도를 비교하여 보았다. 제조한 지지체의 다공도는 $90.2\%$ 이상이었고 평균 다공크기도 69.1$\mu$m 이상이었다. BMSCs는 Wright-Giemsa, Alizarin red, von Kossa 및 ALP 염색결과 조골세포로 분화가 가능했으며, 동물실험을 수행한 결과 DBP가 함유된 지지체에서 칼슘침착 영역을 확인할 수 있었지만 DBP가 함유되지 않은 지지체에서는 칼슘침착 영역을 확인하지 못하였다. 결론적으로 DBP를 함유한 지지체에서 DBP와 BMSCs가 골형성에 중요한 요인으로 작용한다고 사료된다.

Keywords

References

  1. G. Khang, S. J. Lee, and H. B. Lee, 'Polymer-cell Interaction', in Tissue Engineering; Concepts and Application, 2nd Eds., J. J. Yoo, and I. Lee, Editors, Korea Med. Pub. Co., Seoul, p 297 (2002)
  2. E. Wintermantel, J. Mayer, J. Blum, K. L. Eckert, P. Luscher, and M. Mathey, Biomaterials, 17, 83 (1996) https://doi.org/10.1016/0142-9612(96)85753-X
  3. S. P. Baldwin and W. M. Saltzman, Adv. Drug Deliv. Rev., 33, 71 (1998) https://doi.org/10.1016/S0169-409X(98)00021-0
  4. C. M. Agrawal, G. G. Niederauer, D. M. Micallef, and K. A. Athanasiou, 'The use of PLA-PGA Polymers in Orthopedics', in Encyclopedic Handbook of Biomaterials and Bioengineering, 2nd Eds., Marcel Dekker, New York, p 1055 (1995)
  5. J. O. Hollinger and J. P. Schmitz, J. Oral Maxillofac. Surg., 45, 594 (1987) https://doi.org/10.1016/0278-2391(87)90269-2
  6. O. Bostman, J. Bone Joint Surg., 73, 148 (1991) https://doi.org/10.2106/00004623-199173010-00022
  7. K. A. Athanasiou, A. R. Singhal, C. M. Agrawal, and B. D. Boyan, Clin Orthop., 315, 272 (1995)
  8. L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, J. Biomech. Eng., 113, 143 (1991) https://doi.org/10.1115/1.2891228
  9. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993) https://doi.org/10.1016/0142-9612(93)90049-8
  10. M. R. Urist, Science, 150, 893 (1965) https://doi.org/10.1126/science.150.3698.893
  11. C. B. Huggins and M. R. Urist, Science, 167, 896 (1971) https://doi.org/10.1126/science.167.3919.896
  12. J. Wang and M. J. Glimcher, Calcif. Tissue Int., 65, 156 (1999) https://doi.org/10.1007/s002239900676
  13. J. Wang and M. J. Glimcher, Calcif. Tissue Int., 65, 486 (1999) https://doi.org/10.1007/s002239900737
  14. J. Wang, R Yang, L. C. Gerstenfe1d, and M. J. Glimcher, Calcif. Tissue Int., 67, 314 (2000) https://doi.org/10.1007/s002230001130
  15. H. D. Adkinsson, J. Strauss-Schoerenberger, M. Gillis, R. Wilkins, M. Jackson, and K. A. Hruska, J. Orthop. Res., 18, 503 (2000) https://doi.org/10.1002/jor.1100180326
  16. S. Mizuno and J. Glowacki, Exp. Cell. Res., 227, 89 (1996) https://doi.org/10.1006/excr.1996.0253
  17. C. Lasa, J. Hollinger, W. Drohan, and M. MacPhee, Plast. Resconst. Surg., 96, 1409 (1995) https://doi.org/10.1097/00006534-199511000-00027
  18. S. Mizuno and J. Glowacki, Biomaterials, 17, 1819 (1996) https://doi.org/10.1016/0142-9612(96)00041-5
  19. K. Whang, C. H. Thomas, and K. E. Healy, Polymer, 36, 837 (1995) https://doi.org/10.1016/0032-3861(95)93115-3
  20. M. B. Habal, Clin. Orthop., 188, 239 (1984)
  21. J. M. Lane and H. S. Sandhu, Orthop. Clin. North Am., 18, 213 (1997)
  22. H. E. Jergesen, J. Chua, R. T. Kao, and L. B. Kaban, Clin. Orthop., 268, 253 (1991)
  23. N. C. Rath and A. H. Reddi, Nature, 278, 855 (1979) https://doi.org/10.1038/278855a0
  24. G. Khang, P. Shin, I. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Macromol. Res., 10, 158 (2002)
  25. M. K. Choi, G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Polymer(Korea), 25, 318 (2001)
  26. E. K. Jeon, J. Y. Shim, H. J. Whang, G. Khang, I. Jo, I. Lee, J. M. Rhee, and H. B. Lee, Biomater. Res., 5, 23 (2001)
  27. E. K. Jeon, G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Polymer(Korea), 25, 893 (2001)
  28. H. S. Kim, I. Lee, J. M. Lee, C. W. Han, J. H. Sung, M. Y. Park, G. Khang, and H. B. Lee, J. Korea Soc. Endocrinology, 17, 206 (2002)
  29. S. J. Lee, D. H. Lee, G. Khang, Y. M. Lee, and H. B. Lee, Macromol. Chem. Symp., 15, 201 (2002)
  30. J. W. Jang, B. Lee, C. W. Han, I. Lee, H. B. Lee, and G. Khang, Polymer(Korea), 27, 226 (2003)
  31. G. Khang, C. S. Park, J. M. Rhee, S. J. Lee, Y. M. Lee, I. Lee, M. K. Choi, and H. B. Lee, Korea Polym. J., 9, 267 (2001)
  32. L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, and R. Langer, J. Biomed. Mater. Res., 11, 27 (1993)
  33. H. L. Ritter and L. C. Drake, Ind. Eng. Chem., 17, 782 (1945)
  34. D. M. Smith, D. W. Hua, and W. L. Earl, MRS Bull., 19, 44 (1994)
  35. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993)