Dependency of Compatibility Termination Criteria on Prehydration and Bentonite Quality for Geosynthetic Clay Liners

사전투수 및 벤토나이트 품질에 따른 GCL의 투수종결기준에 미치는 영향평가

  • Lee Jae-Myung (Dept. of Civil Engrg., Colorado State Univ.) ;
  • Shackelford Charles D. (EPA Rocky Mountain Regional Hazardous Substance Research Center(RMRHSRC), Dept. of Civil Engrg., Colorado State Univ.) ;
  • Choi Jae-Soon (Dept. of Civil Engrg., Yonsei Univ.) ;
  • Jung Moon-Kyung (Korea Institute of Construction Technology (KICT))
  • Published : 2004.09.01

Abstract

The dependency of criteria used to terminate compatibility tests on the prehydration and quality of bentonite in geosynthetic clay liners (GCLs) is evaluated based on permeation with chemical solutions containing 5, 10, 20, 50, and 100 mM calcium chloride ($CaCl_2$). The hydraulic conductivity tests are not terminated before chemical equilibrium between the effluent and the influent chemistry has been established, resulting in test durations ranging from < 1 day to > 900 days, with longer test durations associated with lower $CaCl_2$ concentrations. The evaluation includes both physical termination criteria (i.e., volumetric flow ratio and steady hydraulic conductivity based on ASTM D 5084, ${\ge}2$ pore volumes of flow, constant thickness of specimen) and chemical termination criteria requiring equilibrium between influent and effluent chemistry (viz., electrical conductivity, pH, and $Ca^{2+}\;and\;Cl^-$ concentrations). For specimens permeated with 5, 10, and 20 mM $CaCl_2$ solutions, only the criterion based on chemical equilibrium in $Ca^{2+}$ concentration correlates well with equilibrium in hydraulic conductivity, regardless of prehydration or quality of bentonite. However, all of the termination criteria, except for the volumetric flow ratio and 2 pore volumes of flow for the prehydrated specimens, correlate well with equilibrium in hydraulic conductivity regardless of prehydration or quality of bentonite when permeated with 50 and 100 mM $CaCl_2$ solutions. The results illustrate the uniqueness of the termination criterion based on solute concentration equilibrium between the effluent and the influent with respect to both prehydration and quality of bentonite in the GCLs.

매립지나 오${\cdot}$폐수 저장지 등에서 폐기물 또는 오염물질의 저장 및 차단에 널리 사용되고 있는 Geosynthetic Clay Liner(GCL)의 물에 의한 사전투수 및 벤토나이트 품질이 투수종결기준에 미치는 영향을 평가하기 위해서 소디움 벤토나이트가 주성분인 두 종류의 GCL을 대상으로 증류수와 농도변화를 위해 5, 10, 20, 50, 100 mM 용액을 혼합한 염화칼슘용액을 이용하여 투수시험을 수행하였다. 투수종결기준들로는 물리적 종결기준들(즉, ASTM에 준한 유출량과 유입량간의 비율과 안정화된 투수계수, 최소 공극량 두배에 해당하는 유출, 그리고 안정화된 시료두께)과 유입수와 유출수간의 화학적 평형에 따른 화학적 종결기준들(즉, 전기전도도, pH, 그리고 칼슘이온과 염소이온 농도)이 고려되었다. 염화칼슘을 이용한 투수시험의 경우, 벤토나이트에 이온결합된 나트륨($Na^+$)에 대한 칼슘($Ca^{2+}$) 치환이 GCL의 투수계수에 중대한 영향을 미치는 것에 근거하여 유입수와 유출수 간의 화학적 평형 및 투수계수의 평형이 이루어질 때까지 실시하였다. 염화칼슘농도에 따른 투수실험결과, 소요투수기간은 농도별로 1일 미만에서 900일 이상으로 큰 차이를 보였으며 염화칼슘 용액의 농도가 낮을수록 평형에 도달하기까지 더 많은 시간이 소요되는 것으로 나타났다. 특히, 염화칼슘 용액의 농도가 20 mM이하의 경우, GCL의 물에 의한 사전투수 여부와 벤토나이트의 품질에 상관없이 유입수와 유출수간의 화학적 평형만이 투수계수의 평형을 보장할 수 있는 것으로 나타났다. 그러나, 염화칼슘 용액의 농도가 50 그리고 100 mM의 경우, 유출량과 유입량간의 비율과 공극량 두배에 해당하는 유출을 제외한 모든 종결기준들이 투수계수의 평형을 보장할 수 있는 것으로 나타났다. 이상의 결과로부터, 물에 의한 사전투수 여부와 벤토나이트의 품질에 상관없이 오로지 유입수와 유출수간의 농도 평형에 준한 종결기준만이 GCL의 투수시험에 적합할 것으로 판단된다.

Keywords

References

  1. Alther, G., Evans, J. C., Fang, H.-Y, and Witmer, K. (1985), 'Influence of Inorganic Permeants upon the Permeability of Bentonite', Hydraulic Barriers in Soil and Rock, A. I. Johnson, R. K. Frobel, N. J. Cavalli, and C. B. Pettersson (eds.), ASTM STP 874, West Conshohocken, PA, pp.64-73
  2. Bowders, J. J., Jr. (1988), 'Termination Criteria for Clay Permeability Testing (Discussion)', Journal of Geotechnical Engineering, ASCE, Vol.114, No.8, pp.947-949 https://doi.org/10.1061/(ASCE)0733-9410(1988)114:8(947)
  3. Bowders, J. J., Jr. and Daniel, D. E. (1987), 'Hydraulic Conductivity of Compacted Clay to Dilute Organic Chemicals', Journal of Geotechnical Engineering, ASCE, Vol.113, No.12, pp.1432-1448 https://doi.org/10.1061/(ASCE)0733-9410(1987)113:12(1432)
  4. Bowders, J. J., Jr., Daniel, D. E., Broderick, G. P., and Liljestrand, H. M. (1986), 'Methods for Testing the Compatibility of Clay Liners with Landfill Leachate', Hazardous and Industrial Solid Waste Testing: Fourth Symposium, J. K. Petros, Jr., W. J. Lacy, and R. A. Conway (eds.), ASTM STP 886, West Conshohocken, PA, pp.233-250
  5. Daniel, D. E. (1994), 'State-of-art: Laboratory Hydraulic Con-ductivity Tests for Saturated Soils', Hydraulic Conductivity and Waste Contaminant Transport in Soil, D. E. Daniel and S. J. Trautwein (eds.), ASTM STP 1142, West Conshohocken, PA, pp.30-78
  6. Daniel, D. E., Bowders, J. J., Jr., and Gilbert, R. B. (1997), 'Laboratory Hydraulic Conductivity Testing of GCLs in Flexible-Wall Permeameters', Testing and Acceptance Criteria for Geo-synthetic Clay Liners, L. W. Well (ed.), ASTM STP 1308, West Conshohocken, pp.208-226
  7. Daniel, D. E., Shan, H.-Y., and Anderson, J. D. (1993), 'Effects of Partial Wetting on the Performance of the Bentonite Component of a Geosynthetic Clay Liner', Geosynthetics '93, Industrial Fabrics Association International, St. Paul, MN, Vol.3, pp.1483-1496
  8. Didier, G. and Comeaga, L. (1997), 'Influence ofInitiai Hydration Conditionson GeL Leachate Permeability', Testing and Acceptance Criteria for Geosynthetic Clay Liners, L. W. Well (ed.), ASTM STP 1308, West Conshohocken, PA, pp.181-195
  9. Dobras, T. N. and Elzea, J. M. (1993), 'In-Situ Soda Ash Treatment for Contaminated Geosynthetic Clay Liners', Geosynthetics '93, Industrial Fabrics Association International, St. Paul, MN, Vol.3, pp.1145-1160
  10. Egloffstein, T. (2001), 'Natural Bentonites - Influence of the Ion Exchange and Partial Desiccation on Permeability and Self-Healing Capacity of Bentonites used in GCLs', Geotextiles and Geomem-branes, Vol.19, No.7, pp.427-444 https://doi.org/10.1016/S0266-1144(01)00017-6
  11. Gleason, M. H., Daniel, D. E., and Eykholt, G. R. (1997), 'Calcium and Sodium Bentonite for Hydraulic Containment Applications', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.5, pp.438-445 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(438)
  12. Imamura, S., Sueoka, T., and Kamon, M. (1996), 'Long Term Stability of Bentonite/Sand Mixtures at L.L.R.W. Storage', Environmental Geotechnics, M. Kamon (ed.), A. A. Balkema, Rotterdam, Vol.1, pp.545-550
  13. James, A. N., Fullerton, D., and Drake, R. (1997), 'Field Performance of GCL under Ion Exchange Conditions', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.10, pp.897-902 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:10(897)
  14. Jo, H. Y, Katsumi, T., Benson, C. H., and Edil, T. B. (2001), 'Hydraulic Conductivity and Swelling of Nonprehydrated GCLs Permeated with Single-Species Salt Solutions', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.7, pp.557-567 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(557)
  15. Kolstad, D. C. (2000), Compatibility of Geosynthetic Clay Liners (GCLs) with Multi-Species Inorganic Solutions, M.S. Thesis, University of Wisconsin at Madison, Wl, 167 p
  16. Lee, J.-M. (2004), Long-TermHydraulic Performance of Geosynthetic Clay Liners Subjected to Inorganic Salt Solutions, Ph.D. Dissertation, Colorado State University, Fort Collins, CO, 402 p
  17. Lee, J.-M. and Shackelford, C. D. (2005a), 'Concentration Dependency of the Prehydration Effect for a Geosynthetic Clay Liner', Soils and Foundations, Japanese Geotechnical Society, in review
  18. Lee, J.-M. and Shackelford, C. D. (2005b), 'Impact of Bentonite Quality on Hydraulic Conductivity of Geosyntehtic Clay Liners', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, in press
  19. Lin, L.-C. and Benson, C. H. (2000), 'Effect of Wet-Dry Cycling of Swelling and Hydraulic Conductivity of GCLs', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.126, No.1, pp.40-49 https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(40)
  20. Melchior, S. (1997), 'In-Situ Studies on the Performance of Landfill Caps (compacted clay liners, geomembranes, geosynthetic clay liners, capillary barriers)', Proceedings, International Containment Conference, St. Petersburg, FL, pp.365-373
  21. Peirce, J. J. and Witter, K. A. (1986), 'Termination Criteria for Clay Permeability Testing', Journal of Geotechnical Engineering, ASCE, Vol.112, No.9, pp.841-854 https://doi.org/10.1061/(ASCE)0733-9410(1986)112:9(841)
  22. Petrov, R. J. and Rowe, R. K. (1997), 'Geosynthetic Clay Liner (GCL) - Chemical Compatibility by Hydraulic Conductivity: Testing and Factors Impacting its Performance', Canadian Geotechnical Journal, Vol.34, No.6, pp.863-885 https://doi.org/10.1139/cgj-34-6-863
  23. Petrov, R. J., Rowe, R. K., and Quigley, R. M. (1997a), 'Comparison of Laboratory-Measured GCL Hydraulic Conductivity Based on Three Permeameter Types', Geotechnical Testing Journal, ASTM, Vol.20, No.1, pp.49-62 https://doi.org/10.1520/GTJ11420J
  24. Petrov, R. J., Rowe, R. K., and Quigley, R. M. (1997b), 'Selected Factors Influencing GCL Hydraulic Conductivity', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.8, pp.683-695 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:8(683)
  25. Quaranta, J. D., Gabr, M. A., and Bowders, J. J., Jr. (1997), 'First-Exposure Performance of the Bentonite Component of a GCL in a Low-pH, Calcium-Enriched Environment', Testing and Acceptance Criteria for Geosynthetic Clay Liners, L. W. Well (ed.), ASTM STP 1308, West Conshohocken, PA, pp.162-180
  26. Ruhl, J. L. and Daniel, D. E. (1997), 'Geosynthetic Clay Liners Permeated with Chemical Solutions and Leachates', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.4, pp.369-381 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(369)
  27. Shackelford, C. D. (1994), 'Waste-Soil Interactions that Alter Hydraulic Conductivity', Hydraulic Conductivity and Waste Contaminant Transport in Soil, D. E. Daniel and S. J. Trautwein (eds.), ASTM STP 1142, West Conshohocken, PA, pp.111-168
  28. Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B., and Lin, L. (2000), 'Evaluation the Hydraulic Conductivity of GCLs Permeated with Non-Standard Liquids', Geotextiles and Geomem-branes, Vol.18, No.2-4, pp.133-161 https://doi.org/10.1016/S0266-1144(99)00024-2
  29. Shan, H.-Y. and Daniel, D. E. (1991), 'Results of Laboratory Tests on a Geotextile/Bentonite Liner Material', Geosynthetics '91, Industrial Fabrics Association International, St. Paul, MN, VoI.2, pp.517-535
  30. Shan, H.-Y. and Lai, Y.-J. (2002), 'Effect of Hydrating Liquid on the Hydraulic Properties of Geosynthetic Clay Liners', Geotextiles and Geomembranes, Vol.20, No.1, pp.19-38 https://doi.org/10.1016/S0266-1144(01)00023-1
  31. Stem, R. T. and Shackelford, C. D. (1998), 'Permeation of Sand-Processed Clay Mixtures with Calcium Chloride Solutions', Journal ofGeotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.3, pp.231-241 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(231)
  32. Vasko, S. M, Jo, H. Y., Benson, C. H., Edil, T. B., and Katsumi, T. (2001), 'Hydraulic Conductivity of Partially Prehydrated Geosynthetic Clay Liners Permeasted with Aqueous Calcium Chloride Solutions', Proceedings, Geosynthetics '01, St. Paul, MN, pp.685-699