DOI QR코드

DOI QR Code

활어수조에서 넙치 사육시 포말분리장치를 이용한 오염물 제거

Removal of Waste Generated by Flounder (Paralichthys olivaceus) in Aquarium using a Foam Separator

  • 신정식 (부경대학교 화학공학과) ;
  • 이창근 (부경대학교 화학공학과) ;
  • 정호수 (부경대학교 화학공학과) ;
  • 이민수 (부산광역시 환경시설공단) ;
  • 이진경 (부경대학교 화학공학과) ;
  • 서근학 (부경대학교 화학공학과)
  • SHIN Jeong-Sik (Division of Chemical Engineering, Pukyong National University) ;
  • LEE Chang-Kuen (Division of Chemical Engineering, Pukyong National University) ;
  • JEONG Ho-Su (Division of Chemical Engineering, Pukyong National University) ;
  • LEE Min-Su (Busan Metropolitan City Environmental Installations Corporation) ;
  • LEE Jin-Kyung (Division of Chemical Engineering, Pukyong National University) ;
  • SUH Keun-Hack (Division of Chemical Engineering, Pukyong National University)
  • 발행 : 2004.12.01

초록

Removal of waste generated by Paralichthys olivaceus in the seawater aquarium using a foam separator was investigated. Protein concentration without a foam separator continuously increased until 3 days after stocking and reached at 25 mg/L after 5 days stocking, but protein concentration became lower than the initial protein concentration (2.5 mg/L) with a foam separator. The trends of other fish wastes such as ammonia, total suspended solids (TSS) and chemical oxygen demand (COD) were similar to protein. Dissolved oxygen (DO) in the aquarium decreased below 6.0 mg/L without a foam separator, but with a foam separator the average DO in the aquarium was 7.3 mg/L. Foam separation with the increase of superficial air velocity (SAV) was more effective than that with the fixed SAV. This study showed that wastewater. treatment of seawater aquarium using a foam separator is effective method for a fish waste removal and oxygen supply.

키워드

참고문헌

  1. APHA, AWWA and WPCK. 1992. Standard Method for the Examination of Water and Wasterwater. 16th ed., Arerican Public Health Association Inc., New York, pp. 132-133
  2. Battacharjee, S., R. Kumar and K.S. Gandhi. 2001. Modeling of protein mixture separation in a batch foam column. Chem. Eng. Sci. 56, 5499-5510 https://doi.org/10.1016/S0009-2509(01)00156-7
  3. Bollag, D.M., M.D. Rozycki and S.J. Edelstein. 1996. Protein Methods. 2nd ed., Wiley-Liss Inc., New York pp. 58-61
  4. Chai, J., V. Loha, A. Prokop and R.D. Tanner. 1998. Effect of bubble velocity and pH step changes on the foam fractionation of sporamin. J. Agric. Food Chem., 46, 2868-2872 https://doi.org/10.1021/jf970929b
  5. Chapman, P.E., J.D. Popham, J. Griffin and J. Michaelson. 1987. Differentiation of physical from chemical toxicity in solids waste fish bioassay. Water Air Soil Poll., 33, 295-308 https://doi.org/10.1007/BF00294198
  6. Chen S, M.B. Timmons, J.J. Bisogni and D.J. Aneshansley. 1993. Suspended-solids removal by foam fractionation. Progress. Fish-Cult, 55(2), 69-75 https://doi.org/10.1577/1548-8640(1993)055<0069:SSRBFF>2.3.CO;2
  7. Christia, C.G. and H.A. Regier. 1988. Measurements of optimal habitat and their relationship to yields for four commercial fish species. Can. J. Fish. Aquat. Sci., 45, 301-314 https://doi.org/10.1139/f88-036
  8. DapkeviEius, M.D.L.E., . BIatista, M.J. Robert, F.M. Rombouts and J.H. Houben. 1998. Lipid and protein changes during the ensilage of blue whiting Micromesistius poutassou Risso) by acid and biological methods. Food Chem., 63(1), 97-102 https://doi.org/10.1016/S0308-8146(97)00156-8
  9. Dwivedy, R.C. 1973. Removal of dissolved organics through foam fractionation in closed cycle systems for oyster production. Am. Soc. Agricult. Eng., 73-561
  10. Faid, M., A. Zouiten, A. Elmarrakchi and A. Achkari Begdouri, 1997. Biotransformation of fish waste into a stable feed ingredient. Food Chem., 60(1), 13-18 https://doi.org/10.1016/S0308-8146(96)00291-9
  11. Kim, B.J. 2002. The foam separation process for the removal of contaminant in seawater. Ph.D. Thesis, Pukyong National University, Busan, Korea, pp. 73. (in Korean)
  12. Kim, B.J., J.H. Lee, S.K. Kim, Y.H. Kim, G.B. Yi and K.H. Suh. 2001. The removal of aquacultural wastes by foam separator from sea water -III. The effect of superficial air velocity. J. Kor. Insti. Chem. Eng., 39(1), 123-129. (in Korean)
  13. Kim, B.J., S.I. Lim and K.H. Suh. 1998. Ammonia removal by using RBC in recirculating aquaculture system. J, Kor. Fish. Soc., 31(5), 622-630. (in Korean)
  14. Kim, Y.H., C.S. Seo, S.H. Lee, K.H. Suh, B.J. Kim, J.K. Cheon and J.Y. Jo. 2002. Performance of parallel current air driven type foam separator in a pilot-scale recirculating aquaculture system. J. Kor. Fish. Soc., 35(2), 140-145. (in Korean)
  15. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275
  16. Major, B.G. 1988. Gill histopathology of juvenile On corhynchus kisutch exposed to suspended wood debris. Can, J. Zool, 66, 2164-2169 https://doi.org/10.1139/z88-323
  17. Malladi, B. and S.C. Ingham, 1993. Thermophilic aerobic treatment of potato processing wastewater. World J. Microbiol. Biotechnol. 31, 426-428
  18. Maruyama, T., M. Okuzumi and Y. Satoh. 1996. The purification of rearing seawater of Japanese flounder with the closed foam separation-filtration system. J. Jap. Soc. Sci. Fish, 62(4), 578-585 https://doi.org/10.2331/suisan.62.578
  19. Min, B.S. and P.A. Kang. 2000. Rearing olive flounder Paralichthys olivaceus in a water reuse system with mineral particles and foam fractionator. J. Aquacult, 13(3), 223-230. (in Korean)
  20. Peng, L. and J.Y. Jo. 2003. Removal of total suspended solids by a foam fractionator in a simulated seawater aquaculture system. J. Aquacult., 16(4), 216-222
  21. Randall, D.J. and T.K.N. Tsui. 2002. Ammonia toxicity in fish. Marine Poll. Bull., 45, 17 -23 https://doi.org/10.1016/S0025-326X(02)00227-8
  22. Reynolds, T.D. and P.A. Richards. 1996. Unit Operations and Processes in Environmental Engineering. 2nd ed. PWS Publ. Co., Boston, pp. 327
  23. Suh, K.H. and M.G. Lee. 1997. Foam separation of in recirculating aquaculture system, J. Kor. Fish. Soc. 30(2), 239-243. (in Korean)
  24. Suh, K.H., J.S. Shin and J.H. Lee. 2003. The effective factors of a foam generation using foam condensate. J. Kor. Fish. Soc., 36(5), 509-514. (in Korean)
  25. Suh, K.H., B.J. Kim and S.K. Kim. 2001. The removal of aquacultural waste by foam separator from sea water. J. Kor. Insti. Chem. Engin., 39(2), 237-244
  26. Suh, K.H, Y.H. Kim and K.H. Ahn. 1997. Removal of ammonia-N by using the immobilized nitrifier consortium in aquaculture system. J. Kor. Fish. Soc. 30(5), 868-873. (in Korean)
  27. Suzuki, Y. and T. Maruyama. 2002. Removal of suspended solids bt coagulation and foam separation using surface active protein. Water Res., 36, 2195-2204 https://doi.org/10.1016/S0043-1354(01)00439-0
  28. Suzuki, Y., T. Maruyama, H. Numata, H. Sato and M. Asakawa. 2003. Performance of a closed recirculating system with foam separation, nitrification and denitrification units fir intensive culture of eel: towards zero emission. Aquacult. Eng., 29, 165-182 https://doi.org/10.1016/j.aquaeng.2003.08.001
  29. Tseng, K.F. and K.L. Wu. 2004. The ammonia removal cycle for a submerged biofilter used in a recirculating eel culture system. Aqua. Eng., 31, 17-30 https://doi.org/10.1016/j.aquaeng.2003.12.002
  30. Wheaton, F.W. 1977. Aquacultural Engineering. Wiley Interscience. New York, pp. 538-555
  31. Weeks, N.C., M.B. Timmons and S. Chen. 1992. Feasibility of using foam fractionation for the removal of dissolved and suspended solids from culture water. Aqua. Eng., 11, 251-265 https://doi.org/10.1016/0144-8609(92)90008-L