Lyotropic Chromonic Liquid Crystals in Aligned Films for Applications as Polarizing Coatings

  • Schneider, Tod (Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University) ;
  • Golovin, Andrii (Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University) ;
  • Lee, Jong-Chan (Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University) ;
  • Lavrentovich, Oleg D. (Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University)
  • 발행 : 2004.06.24

초록

We describe dried oriented films with anisotropic structural and optical properties prepared from the aqueous solutions of plank-like molecules, the so-called Lyotropic Chromonic Liquid Crystals (LCLCs). The dried LCLC films may be used as optical elements, such as polarizers, compensators, color filters, or retardation plates in the UV, visible, or infrared parts of spectrums. The optical quality of the films is determined by the uniformity of the molecular alignment, which often distorted by periodic variations of the director field. We describe different ways to improve the alignment properties of the films by using additives. We present compositions capable of polarizing effects in visible and UV parts of spectrum.

키워드

참고문헌

  1. J. E. Lydon, in Handbook of Liquid Crystals, edited by D. Demus, J. Goodby, G. W, Gray, H.-W.Spiess, V. Vill, vol. 2B, Chapter XVIII, Chromonics (Willey-VCH, New York 1998), p. 981; Curr. Opin. Colloid. Interf. Sci. 8, 480 (2004). https://doi.org/10.1016/j.cocis.2004.01.006
  2. M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer, New York, 2003) p.v
  3. N. H. Hartshorne and G. D. Woodard, Mol. Cryst. Liq. Cryst. 23, 343 (1973) https://doi.org/10.1080/15421407308083381
  4. D. Goldfarb, Z. Luz, N. Spielberg, and H. Zimmermann, Mol. Cryst. Liq. Cryst. 126,225 (1985) https://doi.org/10.1080/00268948508084792
  5. G. J. T. Tiddy, D. L. Mateer, A. P. Ormerod, W.J. Harrison, and D. J. Erdwards, Langmuir 11, 390 (1995) https://doi.org/10.1021/la00002a002
  6. P. Camorani, M. Furier, O. Kachkovskii, Yu. Piryatinsky, Yu. Slominskii, and V. Nazarenko, Semiconductor Physics, Quantum Electronics & Optoelectronics 4, 229 (2001)
  7. J. E. Lydon, Mol. Cryst. Liq. Cryst. Lett. 64, 19 (1980) https://doi.org/10.1080/01406568008072650
  8. J. E. Lydon, Mol. Cryst. Liq. Cryst. Lett. 64, 153 (1981) https://doi.org/10.1080/01406568108072521
  9. Y. W, Hui and M. M. Labes, J. Phys. Chem. 90, 4064 (1986) https://doi.org/10.1021/j100408a046
  10. V. Ramesh, H.-S. Chien, and M. M. Labes, J. Phys. Chem. 91,5937 (1987) https://doi.org/10.1021/j100307a024
  11. J. F. Dreyer, U.S. Patent 2,400,877 (May 1946)
  12. J. F. Dreyer, U.S. Patent 2,544,659 (March 13, 1951)
  13. T. Sergan, T. Schneider, J. Kelly, and O. D. Lavrentovich, Liquid Crystals 27,567 (2000) https://doi.org/10.1080/026782900202390
  14. Y. Bobrov, C. Cobb, P. Lazarev, P. Bos, D. Bryant, and H. Wonderly, in SID, Int. Symp. of Technical Papers, (2000), p.1102
  15. S. Remizov, A. Krivoshchepov, V. Nazarov, and A. Grodsky, Mol. Materials 14, 179 (2001)
  16. W. C. Yip, H. S. Kwok, V. M. Kozenkov, and V. G. Chigrinov, Displays 22, 27 (2001) https://doi.org/10.1016/S0141-9382(01)00051-8
  17. D. Matsunaga, T. Tamaki, H. Akiyama, and K. Ichimura, Adv. Mater. 14, 1477 (2002) https://doi.org/10.1002/1521-4095(20021016)14:20<1477::AID-ADMA1477>3.0.CO;2-L
  18. S. W. Tam-Chang, W. Seo, I. K. Iverson, and S. M. Casey Angew. Chem. Int. Ede. 42, 897 (2003) https://doi.org/10.1002/anie.200390236
  19. C. Ruslim, M. Hashimito, D. Matsunaga, T. Tamaki, and K. Ichimura, Langmuir 20, 95 (2004) https://doi.org/10.1021/la035366e
  20. S. W. Tam-Chang, I. K. Iverson, and J. Helbley, Langmuir 20, 342 (2004) https://doi.org/10.1021/la030256t
  21. H. Sahouani and K. M. Vogel, U.S. Patent 6,245,399 (June 12,2001)
  22. D. Matsunaga, K. Ichimura, and T. Tamaki, U.S. Patent 6,541,185 (April 1, 2003)
  23. H. Sahouani, K. M. Vogel, and M. S. Schaberg, U.S. Patent 6,699,533 (March 2, 2004)
  24. M. J. Helber, W. J. Harrison, K. W. Williams, and S. W. Kortum, U.S. Patent 6,245,255 (June 12, 2001)
  25. T. Sergan and J. Kelly, Liquid Crystals 27, 1481 (2000) https://doi.org/10.1080/026782900750018645
  26. M. Lavrentovich, T. Sergan, and J. Kelly, Liquid Crystals 30, 851 (2003) https://doi.org/10.1080/0267829031000121017
  27. C. Woolverton et al., U.S. Patent 6,171,802
  28. O. D. Lavrentovich and T. Ishikawa, U.S. Patent 6,411,354
  29. O. D. Lavrentovich and T. Ishikawa, U.S. Patent 6,570,632
  30. T. Schneider and O. D. Lavrentovich, Langmuir 16, 5227 (2000) https://doi.org/10.1021/la000081c
  31. T. Schneider, A. Smith, and O. D. Lavrentovich, in Materials Res. Soc. Symp. (2001), p. 636
  32. D. M. Walba and C. A. Liberko U.S. Patent 5,596,434
  33. T. Schneider and O. D. Lavrentovich, U.S. Patent 6,673,398
  34. H. Sahouani and K. M. Vogel, U.S. Patent 6,645,578
  35. L. J. Yu and A. Saupe, Mol. Cryst. Liq. Cryst. 80, 129 (1982) https://doi.org/10.1080/00268948208071026
  36. O. D. Lavrentovich and V. M. Pergamenshchik, Phys. Rev. Lett. 73,979 (1994) https://doi.org/10.1103/PhysRevLett.73.979
  37. O. D. Lavrentovich and V. M. Pergamenshchik, Int. J. Modern Phys. 9, p. 251 (1995)