Strontium Stimulates IAA Oxidation and Polyamine Synthesis in Germinating Mung Bean Hypocotyls (Vigna radiata L.)

숙주 배축생장과정 중 스트론티움에 의한 오옥신산화 및 폴리아민 생합성 촉진

  • Kim, Tae-Wan (Department of Plant Resources Sciense, Hankyong National University)
  • 김태완 (한경대학교 식물자원과학과)
  • Received : 2003.10.07
  • Accepted : 2004.02.04
  • Published : 2004.02.29

Abstract

Mung beans (Vigna radiata L.) were used to investigate the roles of strontium in hypocolyl elongation under IAA regime during the germination. After imbibition in a medium with or without IAA, $Sr^{2+}$ stimulated IAA oxidation. Three to five fold increasing in IAA oxidase activity seems to be direct evidence of growth inhibition through $Sr^{2+}$. Furthermore, the accumulation of spermidinc and spermine by $Sr^{2+}$ in the range of 1 to 10 mM was observed. Spermidine levels were 2 to 3 fold higher than in control seedling grown without strontium. The increase in polyamine levels was observed on a g fresh weight basis. In conclusion, it was demonstrated that the inhibitory action of $Sr^{2+}$ is closely related with the IAA oxidation and polyamine biosynthesis.

본 연구는 숙주의 발아 과정 중 오옥신 과련 대사작용에서의 strontium의 역할을 구명코자 실시하였다. 오옥신 첨가 용액에 strontium을 첨가하여 발아시킨 결과 침지 한 후 IAA 산화가 일어남이 밝혀졌다. 3-5배의 IAA 산화효소 활성화가 측정되었다. 이러한 결과는 strontium에 의한 생장억제의 직접적인 증거였다. 더 나아가 1-10 mM의 strontium 첨가 용액에서 생장한 배축에서의 spermine과 spermine 함량이 2-3배 높은 것으로 밝혀졌다. 이러한 증가는 생체중에 근거한 결과였다. 결론적으로 strontium에 의한 배축생장 억제는 오옥신 산화 및 polyamine 생합성과 관계가 있는 것으로 밝혀졌다.

Keywords

References

  1. Angellini, R., and R. Federico. 1989. Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. J. Plant Physiol. 135:212-217 https://doi.org/10.1016/S0176-1617(89)80179-8
  2. Bagshaw, S. L., and R. E. Cleland. 1993. The effects of enhanced levels of calcium on the gravireaction of sunflower hypocotyls. Plant Cell Environ. 16:1091-1097 https://doi.org/10.1111/j.1365-3040.1996.tb02066.x
  3. Brummel, D. A., and J. L. Hall. 1983. The role of cell wall synthesis by auxin induced growth. Physiol. Plantarum 63:406-412
  4. Brummel, D. A., and J. L. Hall. 1987. Rapid cellular responses to auxin and the regulation of growth. Plant Cell Environ. 10:523-543
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochern. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Brummer, B., and R. W. Parish. 1983. Mechanism of auxin induced plant cell elongation. FEBS Lett. 161:9-13 https://doi.org/10.1016/0014-5793(83)80720-0
  7. Burstrom, H. G. 1983. Calcium, strontium and root growth Pisum sativum peas. Z. Pflanzenphysiol. 109:91-93 https://doi.org/10.1016/S0044-328X(83)80177-9
  8. Cawse, P. A. 1989. The origin, transport and persistence of radionuclides. J. Sci. Food Agr. 49:123-124 https://doi.org/10.1002/jsfa.2740490113
  9. Cho, Y. D., S. H. Lee, Y. H. Kang, M. W. Kim, S. H. Kim, and E. S.Jin. 1986. Cell biological studies on growth and development. Effect of polyamines on D-glucose-6-phosphate cyclohydrolase activity in carrot cells. Korean J. Bot. 29:263-274
  10. Cline, J. F. 1981. Aging effects of the availability of strontium and cesium to plants. Health Phys. 41:293-296 https://doi.org/10.1097/00004032-198108000-00006
  11. Ehlken S., and G. Kirchner. 2002. Envirinmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J. Environ, Radioactiv. 58:97-112 https://doi.org/10.1016/S0265-931X(01)00060-1
  12. Endo, T. 1968. Indoleacetate oxidase activity of horseradish and other plant peroxidase isozymes. Plant Cell Physiol. 9:333-341
  13. Evans, P. T., and R. L. Malmberg. 1989. Do polyamines have roles in plant development ? Annu. Rev. Plant Phys. 40:235-269 https://doi.org/10.1146/annurev.pp.40.060189.001315
  14. Flores, H. E., and P. Filner. 1985. Polyamine catabolism in higher plants: characterization of pyrroline dehydrogenase. Plant Growth Regul. 3:277-291 https://doi.org/10.1007/BF00117586
  15. Flores, H. E., and A. W. Galston. 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69:701-706 https://doi.org/10.1104/pp.69.3.701
  16. Gorden, S. A., and R. P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26:192-195 https://doi.org/10.1104/pp.26.1.192
  17. Guilfoyle, T. J., and J. B. Hanson. 1973. Increased activity of chromatin bound ribonucleic acid polymerase from soybean hypocotyl with spermidine and high ionic strength. Plant Physiol. 51:1022-1025 https://doi.org/10.1104/pp.51.6.1022
  18. Heinrich, G., H. J. Muller, K. Oswald, and A. Gries. 1989. Natural and artificial radionuclides in selected Styrian soils and plants before and after the reactor accident in Chernobyl. Biochem. Physiol. Pflanzen. 185:55-67 https://doi.org/10.1016/S0015-3796(89)80157-X
  19. Hertel, R. 1983. The mechanism of auxin transport as a model for auxin action. Z. Pflanzenphysiol. 112:53-67 https://doi.org/10.1016/S0044-328X(83)80062-2
  20. Hoagland, D. R., and D. I. Amon. 1950. The water cultun- method for growing plants without soil. Cal. Agric. Exp. Stat. Circul. p. 347
  21. Holmstead,B.,L. Larsson, and R. Tham. 1961. Further studies onspectrophotometric method for the determination of amine oxidaseacticity. Biochem. Biophys. Adcta 48:182186 https://doi.org/10.1016/0006-3002(61)90530-3
  22. Hutchin, M. E., and B. E. Vaughan. 1968. Relation between simultaneous Ca and Sr transport rates in isolated segments of vetch, barley and pine roots. Plant Physiol. 43:1913-1918 https://doi.org/10.1104/pp.43.12.1913
  23. Iserman, K. 1981. Uptake of stable strontium by plants and effects on plant growth, p. 65-86. In S. C. Skoryna, (ed.) Handbook of stable strontium, Plenum Press, New York, USA
  24. Jacobson, L., R. Hannapel, D. P. Moore, and M. Schaedel. 1961.Influence of calcium on selectivity of ion absorption processes. Plant Physiol. 36:58-61 https://doi.org/10.1104/pp.36.1.58
  25. Johnson, R. E., and W. A. Jackson. 1966. Effect of calcium and strontium on the preferential formation of an adenosine triphosphatase in wheat roots. Nature 210:869-870 https://doi.org/10.1038/210869a0
  26. Johnson, H. H., and R. H. Wilson. 1973. The accumulation and the release of divalent cations across mitochondrial membranes. Am. J.Bot. 60:858-862 https://doi.org/10.2307/2441065
  27. Kim, T. W., and G. Heinrich. 1994. Calmodulin stimulation of S$r^2^+$/n$H^+$ antiport in vacuoles of red beet (Beta vulgaris L.) storage tissue. Biol. Plant. (Abstract No. 1525) 36:S-381
  28. Kim, T. W., and G. Heinrich. 1995a. Effects of S$r^2^+$, C$a^2^+$, and spermine on thylakoid protein and chlorophyll a/b degradation during the senescence of sugar beet leaf discs. Photosynthetica 31:315-319
  29. Kim, T. W., and G. Heinrich. 1995b. Strontium metabolism in higher plants; Effect of strontium on the polyamine biosynthesis during germination of wheat (Triticum aestivum L.). Korean J. Environ.Agric. 14:55-77
  30. Kim, T. W., and G. Heinrich. 1995c. Use of laser microprobe mass analyzer (LAMMA) for detection of strontium incorporation in oxalate crystals of Beta vulgaris leaf. J. Plant Physiol. 146:217-221 https://doi.org/10.1016/S0176-1617(11)82044-4
  31. Kiyosawa, K., and T. Adachi. 1990. Survival and death of Chara internodal cells in electrolyte solutions and calcium release from cell wall. Plant Cell Enviion. 13:471-476 https://doi.org/10.1111/j.1365-3040.1990.tb01324.x
  32. Liquori, A. M., L. Constantino, V. Grescenzi, A. Elia, E. Giglio, R Puliti, M, De Santis, M. Savino, and V. Vitagliano. 1967.Complex between DNA and polyamines, a molecular model. J.Mol.Biol.24:113-122 https://doi.org/10.1016/0022-2836(67)90094-0
  33. Myttenaere, C. 1964. Effect of the strontium calcium ratio on the localisation of strontium and calcium in Pisum sativum. Physiol. Plantarum 17:814-827 https://doi.org/10.1111/j.1399-3054.1964.tb08208.x
  34. Paunescu, N.,R. Margineanu, and A. lorulescu. 1988.90Sr and 137Cs in fallout from Chemobyl in the Bucharest Magurele area during 1986-1987. J. Radioanal. Nuclear Chem. 28:263-271
  35. Poovaiah, B. W., A. S. N. Reddy, and J. J. McFadden. 1987.Calcium messenger system: role of protein phosphorylation and inositol bisphospholipids. Physiol. Plantarum 69:569-573 https://doi.org/10.1111/j.1399-3054.1987.tb09241.x
  36. Popplewell, D. S., G. J. Ham, T. E. Johnson, J. W. Stather, and S. A.Sumner. 1984. The uptake of $^2^3^8,^2^3^9,^2^4^0$Pu, $^2^4^1$Am, $^9^0$$^1^3^7$Cs topotatoes. Sci. Total Enviion. 38:173-181 https://doi.org/10.1016/0048-9697(84)90215-8
  37. Rasi Caldogno, F., M. I. De Michelis, M. C. Pugliarello, and E.Marre. 1986. H$^+$-pumping driven by the plasma membrane ATPase in membrane vesicles from radish: stimulation by fusicoccin. Plant Physiol. 82:121-125 https://doi.org/10.1104/pp.82.1.121
  38. Redmond, J. W., and A. Tseng. 1979. High pressure liquid chromatographic determination of putrescine, cadaverine, spermidine and spermine. J. Chrom. 170:479-481 https://doi.org/10.1016/S0021-9673(00)95481-5
  39. Romney, E. M., G. V. Alexander, W. A. Rhoads, and K. H. Larsen. 1959. Influence of Ca on plant uptake of $^9^0$Sr and stable Sr. Soil Sci. 87:160-165 https://doi.org/10.1097/00010694-195903000-00007
  40. Sasaki, I., M. N. Dufour, and A. Gaudemer. 1982. Interaction between nucleic acids and metal complexes. 1. Synthesis of polyamines and polyamines derived from uracil. J. Chim. 6:341-344
  41. Seyfried, C. E., and D. R. Morris. 1979. Relationship between inhibition of polyamine biosynthesis and DNA replication in inactivated lymphocytes. Cancer Res. 39:4861 -4867
  42. Simon, W., W. E. Morf, and P. C. Meier. 1973. Specificity for alkali and alkaline earth cations of synthetic and natural organic complexing agents in membrane, Structure Bond. 16:113-160 https://doi.org/10.1007/BFb0004366
  43. Smith, T. A. 1985a. Polyamines. Annu. Rev. Plant Phys. 36:117-143 https://doi.org/10.1146/annurev.pp.36.060185.001001
  44. Smith, T. A. 1985b. Di and polyamine oxidases of higher plants. Biochem.Soc.Trans. 13:319-322 https://doi.org/10.1042/bst0130319
  45. Smith, T. A., and G. R. Best. 1977. Polyamines in barley seedlings. Phytochemistry 16:841-843 https://doi.org/10.1016/S0031-9422(00)86676-5
  46. Stroinski, A., and Z. Szczotka. 1989. Effect of cadmium and Phytophthora infestans on polyamine levels in potato leaves. Physiol. Plantarum 77:244-246 https://doi.org/10.1111/j.1399-3054.1989.tb04976.x
  47. Sumerling, T. J., N. J. Dodd, and N. Green. 1984. The transfer of $^9^0$Sr and $^1^3^7$Cs to milk in a dairy herd grazing near a major nuclear installation, Science of the Total Environment 34:57-72 https://doi.org/10.1016/0048-9697(84)90041-X
  48. Tabor, C. W., and H. Tabor. 1984. Polyamines. Annu. Rev.Biochem. 53:749-790 https://doi.org/10.1146/annurev.bi.53.070184.003533
  49. Tiburicio, A. P., M. A. Masdeu, F. M. Dumortier, and A. W Galston. 1986. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability. Physiol. Plantarum 82:369-374 https://doi.org/10.1104/pp.82.2.369
  50. Vanderhoef, L. N., and R. R. Dute. 1981. Auxin regulated wall loosening and sustained growth in elongation. Plant Physiol.67:146-149 https://doi.org/10.1104/pp.67.1.146
  51. Vickery, L. E., and W. K. Purves. 1972. Isolation of indole 3 ethanol oxidase from cucumber seedlings. Plant Physiol. 49:716-721 https://doi.org/10.1104/pp.49.5.716
  52. Wacker, W. E. C., and B. L. Vallee. 1959. Nucleic acids and metals I, Cr, Mn, Ni, Fe and other metals in ribonucleic acid from diverse biological sources. J. Biol. Chem. 234:3257-3262
  53. Wang, S. Y. 1987. Changes of polyamines and ethylene in cucumber seedlings in response to chilling stress. Physiol. Plantarum 69:253-257 https://doi.org/10.1111/j.1399-3054.1987.tb04283.x
  54. Witschi, H. P., and W. N. Aldridge. 1968. Uptake, distribution and binding of beryllium to organelles of the rat liver. Biochem. J. 106:811-817 https://doi.org/10.1042/bj1060811
  55. Young, N. D., and A. W. Galston. 1983. Putrescine and acid stress. Induction of arginine decarboxylase activity and putrescine accumulation by low pH. Plant Physiol. 71:767-771 https://doi.org/10.1104/pp.71.4.767
  56. Young, N. D., and A. W. Galston. 1984. Physiological control of arginine decarboxylase activtty in K-deficient oat shoots. Plant Physiol. 76:331-335 https://doi.org/10.1104/pp.76.2.331
  57. Zindler-Frank, E. 1991. Calcium oxalate crystal formation and growth in two legume species as altered by strontium. Bot. Acta 104:229-232 https://doi.org/10.1111/j.1438-8677.1991.tb00222.x