Screening of Wintering Cd Hyperaccumulators

월동 가능한 Cd 축적 식물종의 탐색

  • Lee, Han-Na (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University) ;
  • Ok, Yong-Sik (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University)
  • 이한나 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 옥용식 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 김정규 (고려대학교 생명환경과학대학 환경생태공학부)
  • Received : 2003.11.05
  • Accepted : 2004.01.26
  • Published : 2004.02.29

Abstract

This study was aimed at searching for the wintering Cd hyperaccumulators as the life cycle of existing hyperaccumulators were mostly from spring to early winter season. The wintering hyperaccumulators can be effective for saving time loss during the winter. A pot experiment was conducted to search for hyperaccumulators through out the native wintering plants. Seven species of native wintering plants were applied; Bromus catharticus, Oxatis corniculata, Festuca rubra, Thlaspi. arvense, Agastache rrgosa, Viola seoulensis, and Patrinia rapestris. Among them, Bromus catharticus and Thlaspi arvense were selected as Cd hyperaccumulators; the two plants accumulated 112.35 and $86.69mg\;kg^{-1}$ of Cd in the shoot, respectively.

현재까지 국내에서 탐색된 카드뮴 축적 식물 종은 월동이 불가능한 식물이므로 본 연구에서는 겨울기간 동안 phytoremediation에 이용하기 위한 카드뮴 축적 식물종을 탐색하고자 하였다. 월동 가능한 카드뮴 축적 식물을 이용할 경우 시간적 효율성을 제고할 수 있기 때문이다. 식물종은 중부 이북지역에서 월동이 가능하다고 판단되는 초본류 중에서 40종을 우선 선별하고 이중 야생식물종자은행으로부터 분양 가능한 7종 (큰이삭풀, Bromus catharticus: 괭이밥, Oxalis corniculata: 김의털, Festuca rubra: 말냉이, Thiaspi arvense: 배초향, Agastache rugosa: 서울제비꽃, Viola seoulensis: 돌마타리, Patnnia rupestris)의 식물을 실험 대상으로 선정하였다. 7종의 식물은 파종하여 발아시킨 후 사경재배하였다. 양액은 Epstein 1/2 배액을 이용하였으며, 카드뮴은 저면관수로 배양액에 직접 처리하였다. 실험 결과 큰이삭풀과 말냉이는 지상부에 각각 112.35 및 $86.69mg\;kg^{-1}$의 카드뮴을 축적하였고, 이 중에서 큰이삭풀은 생육에 매우 양호하였으므로 겨울기간 동안 카드뮴 축적 식물로서의 활용성이 가장 높을 것으로 사료된다.

Keywords

References

  1. Arahou, M., and H. G. Dien. 1997. Iron deficiency induces cluster (Proteoid) root formation in Casuarina, glauca. Plant Soil. 196:71-79 https://doi.org/10.1023/A:1004268825395
  2. Blaylock, M. J., and J. W. Huang. 2000. Phytoremediation of Toxic Metals. p. 53-70. In I. Raskin and B. D. Ensley (ed.) Using Plants to Clean Up the Environment - Phytoextraction of Metals. John Wiley & Sons. Inc. New York, USA
  3. Brooks, R. R., M. F. Chambers, L. J. Nicks, and B. H. Robinson 1998. Phytomining. Trends Plant Sci. 3:359-362 https://doi.org/10.1016/S1360-1385(98)01283-7
  4. Brown, S. L., R. L. Chaney, J. S. Angel, and A. M. J. Baker. 1995.Zinc and cadmium uptake by hyperaccumulator Thlaspi caerutescens grown in nutrient solution. Soil Sci. Soc. Am. J. 59:125-133 https://doi.org/10.2136/sssaj1995.03615995005900010020x
  5. Cunningham, S. D., T. A. Anderson, A. P. Schuwab, and F. C. Hsu. 1996. Phytoremediation of soils contaminated with organic pollutants. Adv. Agron. 56:55-114 https://doi.org/10.1016/S0065-2113(08)60179-0
  6. Jung, K. C., B. J. Kim, and S. G. Han. 1993. Survey on heavy metals contents in native plant near old zinc-mining sites. Korean J. Environ. Agric. 12:105-111
  7. Kang, B. H., S. I. Shim, and S. G. Lee. 1996. Application of weed species as the diagnostic indicator plants of environmental pollution. Korean J. Environ. Agric. 15:46-69
  8. Kang, B. H., S. I. Shim, S. G. Lee, K. H. Kim, and I. M. Chung. 1998b. Evaluation of Ambrosia artemisiifolia var. elatior, Ambrosia trifida, Rumex crispus for phytoremediation of Cu and Cd contaminated soil. Korean J. Weed Sci. 18:262-267
  9. Kang, B. H., S. I. Shim, S. G. Lee, K. H. Kim, and I. M. Jeong. 1998a. Study on the potential of phytoremediation using wild plants for heavy metal pollution. Korean J. Environ. Agric. 17:312-318
  10. Kim, J. G., S. Lim, S. H. Lee, Y. M. Yoon, C. H. Lee, and C. Y.Jeong. 1999. Evaluation of heavy metal pollution and plant surveyaround inactive and abandoned mining areas for phytoremediation of heavy metal contaminated soils. Korean J. Environ. Agric.18:28-34
  11. Lee, S. H. 1997. Heavy metal content of plants, soils in Younhwa mining area and evaluation of Artemisia princepts as a pioneer species for soil remediation. Thesis of the Degree of Master. Korea University, Seoul, Korea
  12. Lee, Y. N. 1996. Flora of Korea. Kyohaksa, Seoul, Konsa
  13. McGrath, S. P. 1998. Phytoextraction for soil remediation. p. 261-287. In R. R. Brooks (ed.) Plants that hyperaccumulate heavy metals. CAB International, Wallingfoid, UK
  14. McGrath, S. P., K. K. Zhao, and E. Lombi. 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207-214 https://doi.org/10.1023/A:1010358708525
  15. Mejare, M., and L. Bulow. 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 13:67-73
  16. Nedelkoska, T. V., and P. M. Doran. 2000. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner. Eng. 13:549-561 https://doi.org/10.1016/S0892-6875(00)00035-2
  17. Neumann, G., and E. Martinoia. 2002. duster roots - an underground adaptation for survival in extreme environments. TKnds Plant Sci. 7:162-167 https://doi.org/10.1016/S1360-1385(02)02241-0
  18. Ok, Y. S., S. H. Kim, H. Lee, S. Lim, and J. G. Kim. 2003.Feasibility study of phytoremediation for metal-contaminated mining area. Koiea J. Soil Sci. Fert 36(5):323-332
  19. Perronnet, K., C. Schwartz, and J. L. Morel. 2003. Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant Soil 249:19-25 https://doi.org/10.1023/A:1022560711597
  20. Raskin, I., R. D. Smith, and D. E. Salt. 1997. Phytoremediadon of metals: using plants to remove pollutants. Curr. Opin. Biotech. 8:221-226 https://doi.org/10.1016/S0958-1669(97)80106-1
  21. Salt, D. E., R. D. Smith, and I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant. Phys. 49:643-668 https://doi.org/10.1146/annurev.arplant.49.1.643
  22. Schwartz, C., J. L. Morel, S. Saumier, S. N. Whitting, and A. J. M. Baker. 1999. Root development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant Soil 208:103-115 https://doi.org/10.1023/A:1004519611152
  23. Wong, M. H. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphem 50:775-780 https://doi.org/10.1016/S0045-6535(02)00232-1