A Simulation of Wave Induced Current Around the Jeju New Harbor

제주외항 건설에 따른 주변 해역의 해빈류 변화 예측

  • Published : 2004.09.30

Abstract

In this study, the change of the current in the coastal zone before and after the construction of Jeju new harbor was predicted by using the numerical model, which uses Hardy-Cross method. The numerical model was carried out for the present state, before the construction, and the state after the construction, and for the wave direction the NNW direction for winter and NE direction for summer were tested so that the seasonal change may be considered. The computation result shows that a large amount of the wave induced current was occurred when there were high waves coming in from NNW direction before and after the construction. Also, before the construction a longshore current occurred moving from the west to the east at the new harbor construction site so that it formed a rip current in the Hwabuk-dong front sea. And also, after the construction, the tip current produced changed into nearshore circulating current and a small circulating current appeared at the harbor entrance. On the other hand, at Samyang 4each, which is 3.0km away from the new harbor in the NE direction, shows that there was a longshore current occurred from the west to the east, which is in the opposite direction the new harbor, and the effect on the new harbor by sediment transport at Samyang beach is thought to be very small.

본 연구에서는 하디크로스법을 적용한 해빈류 해석 수치모델을 사용하여 제주외항의 건설진, 후에 대한 주변 해연의 흐름 변화를 예측하였다. 수치계산은 외항 건설전의 현재상태와 구조물 완공후의 상태에 대하여 실시하였고, 파향은 계절적인 변화를 고려하여 겨울철 NNW 방향과 여름철 NE 방향을 각각 검토하였다. 계산결과는 건설전, 후 모두 겨울철 NNW 방향의 고파랑 내습시 해빈류가 크게 발생하였다. 또한, 건설전에는 외항 건설 예정해역에서 서쪽에서 동쪽으로 향하는 연안류가 발생하여 화북동 전면해역에서 이안류를 형성하였지만, 건설후에는 화북동 전면해역에서 이안류가 순환류의 형태로 변화하였으며, 외항 입구에서 작은 순환류가 나타남을 볼 수 있었다. 한편, 외항에서 북동쪽으로 3.0km 떨어진 삼양해수욕장 주변의 흐름분포는 외항과 반대방향인 서쪽에서 동쪽으로 연안류가 발생하고 있음을 알 수 있었으며, 해수욕장의 표사이동에 의해서 외항에 미치는 영향은 매우 작을 것으로 판단된다.

Keywords

References

  1. Ebersole, B.A. and Dalrymple, R.A. (1980) Numerical Modeling of Nearshore Circulation, Proc 17th ICCE, ASCE, pp. 271-272
  2. Karlsson, T. (1969) Refraction of continuous ocean wave spectra, ASCE, Vol. 95, No. WW4, PP. 437-448
  3. Longuet-Higgins, MS. and Stewart, R.W., (1960) Changes in the from of short gravity waves on long waves and tidal currents, J. Fluid Meth, Vol. 8, pp. 565-583
  4. Longuet-Higgins, M.S. and Stewart, R.W., (1962) Radiation stress and mass transport in gravity waves with application to 'Surf beat,' J. Fluid Mech, Vol. 10, pp. 481-504
  5. Longuet-Higgins, M.S. and Stewart, R.W., (1964) Radiation stress in water waves-A physical discussion with application, Deep-sea Res., Vol. 11, No. 4, pp. 529-562
  6. Longuet-Higgins, M.S., (1970) Longshore currents generated by obliquely incident sea waves, J. Geophys. Res., Vol. 75, pp. 6778-6801
  7. Mei, C.C., (1983) The applied dynamics of ocean surface wave, John Wiley and Sons, pp. 464-465
  8. Nishimura, H. (1982) Numerical simulation of the near-shore Circulation, Proc. 29th. Japanese Cant.on Coastal Eng., JSCE, pp. 333-357
  9. Nishimura, H., Maruyama, K. and Sakurai, T.(1984) On the numerical computation of near-shore currents, Proc. 31st, japanese Conf. on Coastal Eng., JSCE, pp. 396-400
  10. Noda, E.K. (1974) Wave induced near-shore circulation J. of Geophysical Research, Vol. 75, No. 27, pp. 4097-4106
  11. Shepard, F.P. and Inman D.L., (1950) Near-shore circulation related to bottom topography and wave refraction, Trans. Am. Geophys. Union, Vol. 3, No. 2, pp. 196-212
  12. 本問仁藍修, 堀川 淸可編, (1985) 海받環境工學, 東京大學出版, pp.249
  13. 해양수산부, (2001) 제주외항 서방파제 축조공사 파랑수치모형실험 보고서